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1

Introductory Material

1.1. Multilinear Algebra and Combinatorics

1.1.1. Exterior, Divided, and Symmetric Powers; Multiplication
and Diagonal Maps

Let K be a commutative ring, and let E be a free K-module with a basis
{e1, . . . , en}.

We define the r-th exterior power
∧r E of E to be the r -th tensor power

E⊗r of E divided by the submodule generated by the elements:

u1 ⊗ . . . ⊗ ur − (−1)sgn σ uσ (1) ⊗ . . . ⊗ uσ (r )

for all σ ∈ �r , u1, . . . , ur ∈ E . We denote the coset of u1 ⊗ . . . ⊗ ur by
u1 ∧ . . . ∧ ur .

The following basic properties of exterior powers are proved in [L, chap-
ter XIX, section 1].

(1.1.1) Proposition.
(a) Let {e1, . . . , en} be an ordered basis of E. Then the elements ei1 ∧ . . . ∧

eir for 1 ≤ i1 < . . . < ir ≤ n form a basis of
∧r E. In particular,

∧r E
is a free K-module of dimension

(n
r

)
.

(b) (Universality property of exterior powers) We have a functorial iso-
morphism

θM : Altr (Er , M) → HomK

(
r∧

E, M

)

where Altr (Er , M) denotes the set of multilinear alternating maps from
E×r to M, given by the formula θ r

M ( f )(u1 ∧ . . . ∧ ur ) = f (u1, . . . , ur ).

1
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2 Introductory Material

(c) We have natural isomorphisms

αr :
r∧

(E∗) →
(

r∧
E

)∗

sending the exterior product l1 ∧ . . . ∧ lr to the linear function l on∧e E defined by the formula

l(u1 ∧ . . . ∧ ur ) =
∑
σ∈�r

(−1)sgn σ lσ (1)(u1) . . . lσ (r )(ur ).

The r -th exterior power is an endofunctor on the category of free K-
modules and linear maps. More precisely, for two free K-modules E, F and
a linear map φ : E → F we have a well-defined linear map

r∧
φ :

r∧
E →

r∧
F

defined by the formula
∧r

φ(u1 ∧ . . . ∧ ur ) = φ(u1) ∧ . . . ∧ φ(ur ). Let us
denote m = dim F . Let {e1, . . . , en} be a basis of E and let { f1, . . . , fm} be
a basis of F . In these bases φ correspond to the m × n matrix (φ j,i ) where

φ(ei ) =
m∑

j=1

φ j,i f j .

The map
∧r

φ can be written in the corresponding bases of
∧r E,

∧r F as
follows:

r∧
φ(ei1 ∧ . . . ∧ eir )

=
∑

1≤ j1<...< jr ≤m

M( j1, . . . , jr | i1, . . . , ir ; φ) f j1 ∧ . . . ∧ f jr ,

where M( j1, . . . , jr | i1, . . . , ir ; φ) denotes the r × r minor of the matrix (φ j,i )
corresponding to the rows j1, . . . , jr and columns i1, . . . , ir .

The vector space

•∧
(E) :=

⊕
r≥0

r∧
E

has a natural multiplication

m :
•∧

(E) ⊗
•∧

(E) →
•∧

(E)

given by the formula

m(u1 ∧ . . . ur ⊗ v1 ∧ . . . ∧ vs) = u1 ∧ . . . ∧ ur ∧ v1 ∧ . . . ∧ vs .
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1.1. Multilinear Algebra and Combinatorics 3

This gives
∧•(E) the structure of associative, graded commutative algebra

(meaning that the commutative law reads f g = (−1)deg( f )deg(g)g f ). We call
this algebra the exterior algebra on E . The algebra

∧•(E) has a unit η : K →∧•(E).
The components of the multiplication map will be denoted by m :

∧r E ⊗∧s E → ∧r+s E .
The diagonal map � : E → E ⊕ E induces an algebra map

� :
•∧

(E) →
•∧

(E ⊕ E) ∼=
•∧

(E) ⊗
•∧

(E)

which we will call the diagonal (or comultiplication) map.
The components of � will be denoted by � :

∧r+s E → ∧r E ⊗ ∧s E .
In terms of elements we have

� (u1 ∧ . . . ∧ ur+s)

=
∑

σ∈�
r,s
r+s

(−1)sgn σ uσ (1) ∧ . . . ∧ uσ (r ) ⊗ uσ (r+1) ∧ . . . ∧ uσ (r+s)

where �
r,s
r+s = {σ ∈ �r+s | σ (1) < . . . < σ (r ); σ (r + 1) < . . . < σ (r + s)}.

Finally we have the counit map

ε :
•∧

(E) → K,

defined to be zero on all spaces
∧r E for r > 0, and satisfying εη(1) = 1.

The following proposition is an elementary calculation.

(1.1.2) Proposition.
(a) The maps m, �, ε, η define on

∧•(E) the structure of commutative,
cocommutative bialgebra.

(b) The map α :
∧•(E∗) → (

∧• E)∗ defined in (1.1.1) (c) is an isomor-
phism of bialgebras.

Part (b) of the proposition means that the dual map to the multiplication
map m on

∧•(E) is the diagonal map � on
∧•(E∗) and vice versa.

We define the r-th symmetric power Sr E of E to be the r -th tensor power
E⊗r of E divided by the submodule generated by the elements

u1 ⊗ . . . ⊗ ur − uσ (1) ⊗ . . . ⊗ uσ (r )

for all σ ∈ �r , u1, . . . , ur ∈ E . We denote the coset of u1 ⊗ . . . ⊗ ur by
u1 . . . ur .

The following basic properties of symmetric powers are proved in [L,
chapter XVI, section 8].
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4 Introductory Material

(1.1.3) Proposition.
(a) Let {e1, . . . , en} be an ordered basis of E. Then the elements ei1

1 . . . ein
n

for i1 + . . . + in = r form a basis of Sr E. In particular Sr E is a free
K-module of dimension

(n+r−1
r

)
.

(b) (Universality property of symmetric powers) We have a functorial
isomorphism

θM : Symr (Er , M) → HomK(Sr E, M)

where Symr (Er , M) denotes the set of multilinear symmetric maps
from E×r to M, given by the formula θ r

M ( f )(u1 . . . ur ) = f (u1, . . . , ur ).

The r -th symmetric power is an endofunctor on the category of free K-
modules and linear maps. More precisely, for two free K-modules E, F and
a linear map φ : E → F we have a well-defined linear map

Srφ : Sr E → Sr F

defined by the formula Srφ(u1 . . . ur ) = φ(u1) . . . φ(ur ). Let us denote m =
dim F . Let {e1, . . . , en} be a basis of E , and let { f1, . . . , fm} be a basis of F .
In these bases φ correspond to the m × n matrix (φ j,i ) where

φ(ei ) =
m∑

j=1

φ j,i f j .

The map Srφ can be written in the corresponding bases of Sr E, Sr F as
follows:

Srφ(ei1 . . . eir ) =
∑

1≤ j1<...< jr ≤m

P( j1, . . . , jr | i1, . . . , ir ; φ) f j1 . . . f jr ,

where P( j1, . . . , jr | i1, . . . , ir ; φ) denotes the permanent of the r × r sub-
matrix of the matrix (φ j,i ) corresponding to the (possibly repeated) rows
j1, . . . , jr and (possibly repeated) columns i1, . . . , ir . More precisely, if the
columns (i1, . . . , ir ) with repetitions are written as i b1

1 , . . . , i bs
s with b1 + . . . +

bs = r , we have

P( j1, . . . , jr | i b1
1 , . . . , i bs

s ) =
∑

σ∈�r /(�b1 ×�bs )

φ( j1, iσ (1)) . . . φ( jr , iσ (r )).

where �b1 × . . . × �bs is the subgroup of permutations from �r preserving
the groups of repeating symbols among j1, . . . , jr .

The vector space

Sym(E) :=
⊕
r≥0

Sr E
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1.1. Multilinear Algebra and Combinatorics 5

has a natural multiplication

m : Sym(E) ⊗ Sym(E) → Sym(E)

given by the formula

m(u1 . . . ur ⊗ v1 . . . vs) = u1 . . . urv1 . . . vs .

This gives Sym(E) the structure of associative, commutative algebra. We
call this algebra the symmetric algebra on E . It can be identified with the
polynomial ring over K in n variables e1, . . . , en . In order to keep the notion
of commutativity the same as for the exterior algebras, we assume that Sym(E)
is generated by elements of degree 2.

The components of the multiplication map will be denoted by m : Sr E ⊗
Ss E → Sr+s E .

We also have an obvious unit map η : K → Sym(E) sending K to the
degree zero component of Sym(E).

The diagonal map � : E → E ⊕ E induces an algebra map

� : Sym(E) → Sym(E ⊕ E) ∼= Sym(E) ⊗ Sym(E),

which we will call the diagonal (or comultiplication) map.
The components of � will be denoted by � : Sr+s E → Sr E ⊗ Ss E . In

terms of elements we have

�(u1 . . . ur+s) =
∑

σ∈�
r,s
r+s

uσ (1) . . . uσ (r ) ⊗ uσ (r+1) . . . uσ (r+s)

where �
r,s
r+s = {σ ∈ �r+s |σ (1) < . . . < σ (r ); σ (r + 1) < . . . < σ (r + s)}.

Finally we have the counit map

ε : Sym(E) → K

defined to be zero on all spaces Sr E for r > 0, and satisfying εη(1) = 1.
We have the following analogue of (1.1.2) (a).

(1.1.4) Proposition. The maps m, �, ε, η define on Sym(E) the structure of
a commutative, cocommutative bialgebra.

Let us investigate the duality. The algebra Sym(E) = ⊕
r≥0 Sr E is not

finite dimensional, so instead of the dual we have to work with the graded
dual

Sym(E)∗gr :=
⊕
r≥0

(Sr E)∗.
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6 Introductory Material

The module map

E∗ = (S1 E)∗ → Sym(E)∗gr

induces by universality an algebra map

β : Sym(E∗) → Sym(E)∗gr .

This map β is an isomorphism only when K contains a field of rational
numbers. In fact it is given by the formula

β(l1. . . lr )(u1. . . ur ) =
∑
σ∈�r

lσ (1)(u1) . . . lσ (r )(ur ).

In particular, when l1 = . . . = lr , u1 = . . . = ur we see that β(lr
1) = r !(ur

1)∗.
In order to describe the graded dual of the symmetric algebra we introduce

the divided powers.
We define the r-th divided power Dr (E) as the dual of the symmetric

power.

Dr (E) := (Sr (E∗))∗.

Its basis is the dual basis to the natural basis of the symmetric power. If
{e1, . . . , en} is a basis of E , we define e(i1)

1 . . . e(in )
n to be the element of the

dual basis to the basis {(e∗
1) j1 . . . (e∗

n) jn }, dual to (e∗
1)i1 . . . (e∗

n)in .
For every u ∈ E we can define its r-th divided power u(r ) ∈ Dr E . It is

given by the formula(
n∑

i=1

ui ei

)(r )

=
∑

p1+...+pn=r

u p1
1 . . . u pn

n e(p1)
1 . . . e(pn )

n .

It is easy to check that this definition does not depend on the choice of basis
{e1, . . . , en}.

(1.1.5) Proposition. The divided powers have the following properties:

(a) u(0) = 1, u(1) = u, u(r ) ∈ Dr E,
(b) u(p)u(q) = (p+q

q

)
u(p+q),

(c) (u + v)(p) = ∑p
k=0 u(k)v(p−k),

(d) (uv)(p) = u(p)v(p),
(e) (u(p))(q) = [p, q]u(pq) for u ∈ E; [p, q] = [(pq)!]/(q!pq !).

(1.1.6) Remark. In the notation used above, e(i1)
1 . . . e(in )

n has a double mean-
ing. It is the element of the dual basis to the basis in the symmetric power,
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1.1. Multilinear Algebra and Combinatorics 7

and it is the product of divided powers. It is not difficult to see that the two
elements coincide.

The r -th divided power is an endofunctor on the category of free K-modules
and linear maps. More precisely, for two free K-modules E, F and a linear
map φ : E → F we have a well-defined linear map

Drφ : Dr E → Dr F

which is best described as the transpose of the map Sr (φ∗) : Sr (F∗) → Sr (E∗).
This also gives the description of the matrix coefficients for Drφ as polyno-
mials in the entries of φ, which we leave to the reader.

The divided power algebra D(E) := ⊕
Dr (E) on E is a commutative,

cocommutative algebra because it is a graded dual of the symmetric algebra
on E∗. Again we denote the components of the multiplication map by

m : Dr E ⊗ Ds E → Dr+s E,

and the components of the comultiplication by

� : Dr+s E → Dr E ⊗ Ds E .

Let us record the duality statements.

(1.1.7) Proposition.
(a) The multiplication map

m : Dr E ⊗ Ds E → Dr+s E

is the dual of the diagonal map

� : Sr+s E∗ → Sr E∗ ⊗ Ss E∗.

(b) The diagonal map

� : Dr+s E → Dr E ⊗ Ds E

is the dual of the multiplication map

m : Sr E∗ ⊗ Ss E∗ → Sr+s E∗.

(c) The diagonal map � : Dr+s E → Dr E ⊗ Ds E is given by the formula

�(e(i1)
1 . . . e(in )

n )

=
∑

j1+...+ jn=r, 0≤ js≤is for s=1,...,n

e( j1)
1 . . . e( jn )

n ⊗ e(i1− j1)
1 . . . e(in− jn )

n .
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1.1.2. Partitions, Skew Partitions. Combinatorics
of Z2-Graded Tableaux.

Let n be a natural number. A partition λ of n is a sequence λ = (λ1, . . . , λs)
of natural numbers such that λ1 ≥ λ2 ≥ . . . ≥ λs ≥ 0 and λ1 + λ2 + . . .

+ λs = n. We identify the partitions (λ1, . . . , λs) and (λ1, . . . , λs, 0). To each
partition λ we associate its Young frame (or Ferrers diagram) D(λ). It can be
defined as

D(λ) = {(i, j) ∈ Z × Z |(1 ≤ i ≤ s, 1 ≤ j ≤ λi }.

To represent the Young frames graphically we think of them as contained in
the fourth quadrant. A Young frame is a set of boxes with λi boxes in the
i-th row from the top. Formally it could be achieved by considering the point
( j, −i) instead of (i, j).

(1.1.8) Example. λ = (4, 2, 1):

D(λ) = .

Formally the boxes of D((4, 2, 1)) correspond to the set of points

{(1, −1), (2, −1), (3, −1), (4, −1), (1, −2), (2, −2), (1, −3)}

in the grid Z × Z.

Let λ be a partition. We say that λ has a Durfee square of size r (or
rank λ = r ) if λr ≥ r , λr+1 ≤ r , i.e., if the biggest square fitting inside of λ

is an r × r square.
Let λ be a partition, and let X be a box in λ. The set of boxes to the right of

X (including X ) is called an arm of X . The set of boxes below X (including
X ) is called the leg of X . The arm length (leg length) of X are defined as the
numbers of boxes in the arm (leg) of X .

The arm and leg of X form a hook of X . The number of boxes in the hook
of X is called the hook length of X .

Let λ be a partition of rank r . Let ai (bi ) be the arm length (leg length)
of the i-th box on the diagonal of λ. The partition λ is uniquely determined
by its rank r and the numbers ai , bi (1 ≤ i ≤ r ). These numbers satisfy the
conditions a1 > . . . > ar > 0, b1 > . . . , br > 0.
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We will sometimes denote by λ = (a1, . . . , ar |b1, . . . , br ) the partition
with diagonal arm lengths ai and diagonal leg lengths bi . We refer to this as
a Frobenius (or hook) notation for λ.

(1.1.9) Example. The partition λ = (4, 3, 2) in the hook notation is (4, 2|3, 2).
The boxes in the arm (leg) of the i-th diagonal box are filled with symbol i (ī ):

X 1 1 1
1̄ X 2
1̄ 2̄

.

Let λ be a partition. The conjugate (or dual) partition λ′ is defined by
setting

λ′
i = card{t |λt ≥ i}.

The Young frame of λ′ is obtained from the Young frame of λ by reflecting
in the line y = −x .

(1.1.10) Example. λ = (4, 2, 1), λ′ = (3, 2, 1, 1):

D(λ′) = .

Let λ and µ be two partitions. We say that µ is contained in λ (denoted
µ ⊂ λ) if for each i we have µi ≤ λi . Let λ and µ be two partitions with
µ ⊂ λ. We refer to such a pair as a skew partition λ/µ.

We associate to a skew partition λ/µ the skew Young frame

D(λ/µ) := D(λ) \ D(µ).

Graphically we can represent it as a Young frame of λ with the boxes corre-
sponding to µ missing.

(1.1.11) Example. λ = (4, 2, 2, 1, 1), µ = (3, 1):

D(λ/µ) = .
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Let A = (A0, A1) be a Z2-graded set, i.e. the pair of sets indexed by {0, 1}.
Assume that the set A is ordered by a total order �. A tableau of shape λ/µ

with values in A is a function T : D(λ/µ) → A.

(1.1.12) Definition.
(a) A tableau T of shape λ/µ with values in A is row standard if for each

(u, v) we have T (u, v) � T (u, v + 1) with equality possible if T (u, v) ∈
A1.

(b) We say that a tableau T of shape λ/µ with values in A is column stand-
ard if T (u, v) � T (u + 1, v) with equality possible when T (u, v) ∈ A0.

(c) A tableau T of shape λ/µ with values in A is standard if it is both
column standard and row standard.

(1.1.13) Notation. We denote by RST(λ/µ, A) (CST(λ/µ, A), ST(λ/µ, A))
the set of row standard (column standard, standard) tableaux of shape λ/µ

with values in A. We denote by [1, m] ∪ [1, n]′ the Z2-graded set A with
A0 = [1, m], A1 = [1′, n′] and with the order � defined to be the natural
order on A0 and A1 with A0 preceeding A1. Similarly we define the Z2-graded
set [1, n]′ ∪ [1, m] (here A1 preceeds A0).

(1.1.14) Examples. Let λ = (4, 2, 2, 1, 1), µ = (2, 1). Let A = [1, 2] ∪ [1, 3]′.

(a) The tableau

T1 =

1 2
1′

1′ 1′

2′

2′

is row standard but not column standard.
(b) The tableau

T2 =

1 1
1′

1′ 2′

2′

3′

is column standard but not row standard.
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1.1. Multilinear Algebra and Combinatorics 11

(c) The tableau

T3 =

1 2
1′

1′ 2′

2′

3′

is standard.

Let λ/µ be a skew partition, and let A = (A0, A1) be a Z2-graded set
ordered by the total order �. We define the orders � (relative to �) on the
sets of row standard (column standard, standard) tableaux as follows.

Consider the set RST(λ/µ, A). Given two tableaux T, U , we have T � U
if T = U . Assume that T �= U . Let us write them as T = (T1, . . . , Ts), U =
(U1, . . . , Us) with Ti (Ui ) being the part of T (U ) from the i-th row of λ/µ.
Let j be the minimal i for which Ti �= Ui . We have Tj = (T ( j, 1), . . . , T
( j, λ j − µ j )), U j = (U ( j, 1), . . . , U ( j, λ j − µ j )). Now let k be the smallest
index for which T ( j, k) �= U ( j, k) (such a k exists by the choice of j). We
say that T � U if and only if T ( j, k) � U ( j, k).

The order � on ST(λ/µ, A) is defined to be the restriction of � from
RST(λ/µ, A).

Finally we define the order � on CST(λ/µ, A). Given two tableaux T, U
from CST(λ/µ, A), then T = U implies T ≤ U . Assume T �= U . We write
T = (T 1, . . . , T s), U = (U 1, . . . , U s) with T i (U i ) being the part of T (U )
from the i-th column of λ/µ. Let j be the minimal i for which T i �= U i .
We have T j = (T (1, j), . . . , T (λ′

j − µ′
j , j)), U j = (U (1, j), . . . , U (λ′

j −
µ′

j , j)). Now let k be the smallest index for which T (k, j) �= U (k, j) (such
k exists by the choice of j). We say that T � U if and only if T (k, j) �
U (k, j).

Note. The order � on ST(λ/µ, A) is the restriction of the order � on
RST(λ/µ, A). It is different from the restriction of � on CST(λ/µ, A).

(1.1.15) Examples. Let λ = (2, 1), µ = (0). Set A = [1, 2] ∪ [1, 2]′. In RST
(λ/µ, A) we have

1 2
1′ � 1 1′

2
� 2 1′

1
.
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In CST(λ/µ, A) we have

1 1′

2
� 1 2

1′ � 2 1
1′ .

In ST(λ/µ, A) we have

1 2
1′ � 1 1′

2
.

1.2. Homological and Commutative Algebra

1.2.1. Regular Sequences, Koszul Complexes, Depth

Let R be a commutative Noetherian ring. Let M be an R-module. The di-
mension dim M of M is defined to be the Krull dimension of R/Ann(M),
where

Ann(M) = {x ∈ R | x M = 0 }
is the annihilator of M .

Let I be an ideal in R. If I M �= M , we define the I -depth of M as

depthR(I, M) = min {i | ExtiR(I, M) �= 0 }.
In the case I M = M we define depthR(I, M) = ∞. For a finitely generated
R-module M we have I M �= M if and only if depthR(I, M) < ∞ if and only
if depthR(I, M) ≤ dim M .

A sequence a = (a1, . . . , an) of elements from R is an M-sequence
(or a regular sequence on M) if M �= (a1, . . . , an)M and the multiplication
ai : Mi−1 → Mi−1 is injective for i = 0, 1, . . . , n − 1, where Mi := M/

(a1, . . . , ai )M .
The connection between these notions is expressed in

(1.2.1) Theorem. Let R be a Noetherian ring, and M a finitely generated
R-module. Let I be an ideal in R. The following conditions are equivalent:

(a) depthR(I, M) ≥ n.
(b) ExtiR(R/I, M) = 0 for i < n.
(c) There exists an M-sequence a = (a1, . . . , an) of length n with ai ∈ I

for i = 1, . . . , n.

A regular sequence (a1, . . . , an) is a maximal regular M-sequence if there
is no b such that (a1, . . . , an, b) is an M-sequence. In particular the theorem
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implies that two maximal regular M-sequences with terms from I must have
the same length, equal to depth(I, M).

Let M be an R-module, and let a = (a1, . . . , an) be a sequence of el-
ements from R. We define the Koszul complex K (a, M)• as follows. For
an n-dimensional free R-module E = Rn with a basis e1, . . . , en we set
K (a, M)i = ∧i E ⊗R M , and the differential

d :
i∧

E ⊗R M →
i−1∧

E ⊗R M

is defined by the formula

d(e j1 ∧ . . . ∧ e ji ⊗ m) =
i∑

u=1

(−1)u+1e j1 ∧ . . . ∧ ê ju ∧ . . . ∧ e ji ⊗ a ju m.

Let M be a finitely generated R-module. We define the codimension of M ,

codimR(M) := ht Ann(M),

where ht denotes the height of an ideal. We also define the grade of M ,

gradeR(M) = depthR(Ann(M), R).

The homological properties of Koszul complex include the information
about the depth.

(1.2.2) Theorem. Let M be a finitely generated R-module, and let a =
(a1, . . . , an) be a sequence of elements from R. Denote I = (a1, . . . , an).
Then

depthR(I, M) = n − max{ i |Hi (K (a, M)) �= 0 }.

(1.2.3) Corollary. Let R be a commutative ring. Assume that I = (a1, . . . , an)
is an ideal generated by a regular sequence. Then the Koszul complex K (a, R)•
is a free resolution of the R-module R/I .

The ideal I is a complete intersection ideal of codimension n if there
exists a regular sequence (a1, . . . , an) such that I = (a1, . . . , an). Thus the
finite free resolutions of complete intersection ideals are provided by Koszul
complexes.

The projective dimension, codimension, and grade of an R-module are
related.
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(1.2.4) Theorem. For an R-module M �= 0 we have

pdR(M) ≥ codim(M) ≥ gradeR(M).

A finitely generated R-module N is perfect if pdR(N ) = grade(N ). In
that case the inequalities in (1.2.4) become equalities. We call codim(N ) the
codimension of N . Sometimes by abuse of notation we call the grade of R/I
the grade of the ideal I .

Let us note the following consequence of Theorem (1.2.4) applied to
N = R.

(1.2.5) Proposition. Let I be an ideal of codimension n. The functor N �→
ExtnR(N , R) is an exact contravariant involution on the category of perfect
modules N with Ann(N ) = I up to radical.

If R/I is a perfect module, we call I a perfect ideal. An ideal I is Gorenstein
if I is perfect and Extn(R/I, R) ∼= R/I for n = codim(R/I ).

1.2.2. Cohen–Macaulay Rings and Modules, Gorenstein Rings

Let (R, m) be a local ring. The depth of a module M is defined as

depthR(M) := depthR(m, M).

We have the following inequalities:

(1.2.6) Proposition. Let M be a finitely generated module over a local ring
R. Then

depth(M) ≤ dim M ≤ dim R.

An R-module M is Cohen–Macaulay if depth(M) = dim M . If depth
(M) = dim R, we say that M is maximal Cohen–Macaulay. The zero module
is by definition maximal Cohen–Macaulay. The ring R is Cohen–Macaulay
if it is Cohen–Macaulay as a module over itself.

The projective dimension and depth of a module over a local ring are
complementary to each other.

(1.2.7) Theorem (Auslander–Buchsbaum Formula). Let R be a Noetherian
local ring. Assume that pdR(M) < ∞. Then we have

pdR(M) + depth(M) = depth(R).
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It follows that if R is Cohen–Macaulay and M is a maximal Cohen–
Maculay module of finite projective dimension over R, then M is R-free.

If R is a Cohen–Macaulay local ring and M is a finitely generated
R-module of finite projective dimension, then M is Cohen–Macaulay if and
only if it is perfect.

If R is a Cohen–Macaulay local ring, then dim R = dim R/P for every
associated prime P of R. This means that R is equidimensional.

A local ring (R, m) is Gorenstein if an only if R has a finite injective
dimension as an R-module.

(1.2.8) Theorem. Let (R, m) be a local ring of dimension d. The following
conditions are equivalent:

(a) R is Gorenstein,
(b) for i �= d we have ExtiR(K , R) = 0, Extd (K , R) = K ,
(c) there exists i > d such that ExtiR(K , R) = 0,
(d) ExtiR(K , R) = 0 for i < d, ExtdR(K , R) = K ,
(e) R is Cohen–Macaulay and ExtdR(K , R) = K .

Recall that the embedding dimension of a local ring is emdim (R) =
dimK m/m2. A local ring R is regular if emdim(R) = dim R.

We denote by gl dim R the global dimension of R.

(1.2.9) Theorem (Auslander and Buchsbaum, Serre). Let (R, m) be a local
ring of dimension d. Then the following are equivalent:

(a) R is a regular local ring,
(b) gl.dim R < ∞,
(c) gl.dim R = d,
(d) pdR K = d,
(e) m is generated by a regular sequence of length d.

The connection between the notions of Cohen–Macaulay (Gorenstein) ring
and perfect (Gorenstein) ideal is stated in the next proposition.

(1.2.10) Proposition.
(a) Let R be a Cohen–Macaulay local ring. Then the ring R/I is Cohen–

Macaulay if and only if I is perfect,
(b) Let R be a Gorenstein local ring. Then R/I is Gorenstein if and only

if I is a Gorenstein ideal.
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The theory outlined above for local rings has an analogue for graded rings
and graded modules. Let us state the corresponding statements.

Let R be a graded ring R = ⊕
i≥0 Ri where R0 = K is a field and Ri are

finite dimensional vector spaces over K . We assume that R is generated as a
K -algebra by elements of degree 1, which implies that R is Noetherian. We
denote by m the maximal ideal m = R+ = ⊕

i>0 Ri . For a graded R-module
M we denote depthR(M) := depthR(m, M).

Then the following statements hold.

(1.2.6)′ Proposition. Let M be a finitely generated graded module over a
graded ring R. Then

depthR(M) ≤ dim M ≤ dim R.

(1.2.7)′ Theorem (Auslander–Buchsbaum formula). Let R be a graded
ring, and let M be a graded R-module. Assume that pdR(M) < ∞. Then we
have

pdR(M) + depthR(M) = depthR(R).

(1.2.8)′ Theorem. Let R be a graded ring of dimension d with the maximal
ideal m = R+. The following conditions are equivalent:

(a) R is Gorenstein,
(b) for i �= d we have ExtiR(K , R) = 0, Extd (K , R) = K ,
(c) there exists i > d such that ExtiR(K , R) = 0,
(d) ExtiR(K , R) = 0 for i < d, ExtdR(K , R) = K ,
(e) R is Cohen–Macaulay and ExtdR(K , R) = K .

The theorem characterizing the regular rings differs because the only
graded regular ring is a polynomial ring.

The embedding dimension of a graded ring R is emdim(R) = dimK m/m2.
A graded ring R is regular if emdim(R) = dim R.

(1.2.9)′ Theorem. Let R be a graded ring of dimension d with the maximal
ideal m = R+. Then the following are equivalent:

(a) R is a regular graded ring,
(b) gl.dim R < ∞,
(c) gl.dim R = d,
(d) pdR K = d,
(e) m is generated by a regular sequence of length d,
(f) R is a polynomial ring over K in d variables.


