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Preface

The idea of writing this book came from the collaboration of the authors. We
started working on quiver representation when the first author visited North-
eastern University as a Research Scholar in the academic year 1997/1998.
We both came from other fields of algebra so we had to learn the subject
from scratch. At the same time we were interested in connections of quiver
representations with invariant theory, representations of algebraic groups,
and algebraic geometry.

This experience made us realize that (except for Crawley-Boevey’s notes
[18] available online), there is no introductory text which would allow a
person without any knowledge of Artin algebras to learn the subject quickly.

Later both authors taught courses on quiver representations at Uni-
versity of Michigan and Northeastern University, respectively. The second
author also taught a two month course on quiver representations at Tor
Vergata University in Rome in the spring of 2007.

We are grateful to Calin Chindris, Jiarui Fei, Ryan Kinser, Andrea Ap-
pel, Andrew Carroll, Sachin Gautam, Daniel Labardini, Kavita Sutar, Sal-
vatore Stella, Riccardo Aragona, Ada Boralevi, Cristina DiTrapano, Luca
Moci, and other students who took part in these courses.

The book is addressed to non-specialists, who want to learn the subject
without going through the extended preparation in algebra, just starting
from basic linear algebra. It turned out to be impossible to be completely
elementary, so in some places we use some basic algebraic geometry (mainly
the dimension counts).

ix



x Preface

We do not prove the results in full generality, working over the field C

of complex numbers. We also work mostly with acyclic quivers. We only
cover Auslander-Reiten duality in the case of hereditary algebras.

The book reflects our point of view, so the semi-invariants are covered
in detail and we stress their role in our approach. Some of the results
could be proved just using stability conditions without mentioning semi-
invariants, but we find the combinatorics of the rings of semi-invariants
quite fascinating.

Still many important topics are left out, for example, Ringel-Hall alge-
bras and Nakajima quiver varieties.

In recent years the field developed very quickly. New concepts and con-
nections emerged. We wanted this development to be reflected in the book,
hence there are chapters on orthogonal categories, exceptional sequences and
cluster categories.

We stress the connections of quiver representations with representations
of algebraic groups and moduli problems.

The authors thank the National Science Foundations for its support
during the writing of this book.

We discussed the subject of the book with many mathematicians, with
some of whom we coauthored our papers. We benefited from discussions
with Prakash Belkale, Calin Chindris, Bill Crawley-Boevey, Jose Antonio de
la Pena, Jiarui Fei, Lutz Hille, Kiyoshi Igusa, Ryan Kinser, Mark Kleiner,
Visu Makam, Kent Orr, Charles Paquette, Idun Reiten, Claus Ringel, Ralf
Schiffler, Aidan Schofield, Gordana Todorov, Michel Van den Bergh, and
Andrei Zelevinsky.

The second author also wants to thank Piotr Dowbor, Daniel Simson and
Andrzej Skowroński whose questions about the invariant theory of quivers
aroused his interest in the subject.



Notation

[1, n] = {1, 2, . . . , n}, 195

〈α, β〉, Euler form, 32
(α, β), Cartan form, 50
add(T ), additive subcategory, 254
|α|, 3
α � β, 209
α⊕m, 250
A–mod, 12
An,Dn,En, Dynkin graphs, 52
̂An, ̂Dn, ̂En, extended Dynkin graphs,

53
Aop, 14
AR(Πn+3), AR quiver of Πn+3, 292
AR(T ), AR quiver of a triangulation,

291
At, transpose of the matrix A, 151

β ↪→ α, 209
BQ(α), Tits form, 50

C+, C−, Coxeter functors, 66
C, complex numbers, 1
c, Coxeter transformation, 67
⊥C, left orthogonal category, 260
C⊥, right orthogonal category, 260
C(f), cone of a morphism, 307
χ, multiplicative character, 164, 176
χ(V,W ), Euler characteristic, 32
cνλ,μ, LR coefficient, 195
Com(A), category of complexes, 306

Comb(A), category of bounded
complexes, 306

CQ, path algebra, 11

C(V ), 26

C[X]G, invariant ring, 154
C−

x , reflection functor, 60
C+

x , reflection functor, 59
Cyl(f), cylinder of a morphism, 307

D, duality functor, 103
Δ(An), associahedron, 288
Δ(i, j, k), triangle with vertices i, j, k,

288
ΔQ, simplicial complex associated to Q,

297
δi,j , Kronecker symbol, 33
dim(V ), dimension vector, 3
D(λ), Young diagram of λ, 193
dT,[i,j], dim. vector of triangulation and

diagonal, 291
dVW , 2, 28

εi, dimension vector of simple Si, 66
ExtiQ(V,W ), 30
ek, elementary symmetric function, 154
EndA(P ) = HomA(P, P ) endomorphism

ring, 44
EQ(V, V

′), 295
Ext(V,W ) = Ext1(V,W ), 27
ex, trivial path, 11
extQ(α, β), generic ext, 209

Fq, field with q elements, 143

Ga, additive group, 150
GLa, invertible a× a matrices, 6
GLα, 6

325
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GLα,σ, 180
Gm, the multiplicative group, 150
Γ(Q), undirected graph of Q, 50
Grass(k,m), Grassmann, 231

ha = h(a), head of a, 1

Hk(C), cohomology of a complex, 25
HomQ(V,W ), morphism space, 2
homQ(α, β), generic hom, 209
hp = h(p), head of a path, 11

ι : G → G, inverse map, 150
In, the n× n identity matrix, 151
Ind(Q), 64
inx, 59
Ix, injective representation, 22

Kb(A), homotopy category, 307

|λ|, 193
λ(α), 133

(w), length of w, 136

m : G×G → G, multiplication, 150
Mata,b, a× b matrices, 6
mod–A, 12

N, nonnegative integers, 3
N , Hilbert’s nullcone, 163

On, the orthogonal group, 151
outx, 61

〈p〉, 11
Permd, 184
PGLα, 175
PGLα,σ, 180
Φ, the Frobenius automorphism, 143
˜Φ+, almost positive roots, 294
Πn+3, regular (n+ 3)-gon, 288
Pol(f), polarization of f , 185
Pu,v(Q), preprojective algebra, 115
P(V )ss, semi-stable points, 168
P(X), 167
Px, projective representation, 22
π : X → X//G, quotient, 162

Q, quiver, 1
Q0, vertices, 1
Q1, arrows, 1
Q(T ), quiver of a triangulation, 289

R, Reynolds operator, 155
rad(A), Jacobson radical, 39

Repα(Q), representation space, 6
Repα(Q)//σ GLα, 180
Repα(Q)ss, Repα(Q)s, 179
Rep(Q), category of representations, 3
Rep(Q, J), 36

σx(α), reflection of a vector, 58
sdimV , signed dimension vector, 294
σ̃x, piecewise-linear reflection, 300
SI(G,V ), ring of semi-invariants, 165
SI(Q, β), ring of semi-invariants, 166
SLβ , 166
Sn, symmetric group, 154
Spec(R), spectrum of a ring R, 162
σx(Q), reflection of quiver, 58
Σ(Q, β), the cone of weights, 209
Sλ, Schur functor, 193
Sx, simple representation, 8

ta = t(a), tail of a, 1
Tα, 175
τ+, τ−, AR translation, 103
tp = t(p), tail of a path, 11
trace(·), trace of a linear map, 161
Tr(V ), transpose of a module V , 100

Un, unitary group, 156

V ⊗(d,e) , 184
V G, space of G-invariants, 153
V s, set of stable vectors, 169
V ss, set of semi-stable points, 167
V ⊕W , direct sum, 4
V ⊥ W , V left orthogonal to W , 260

W Weyl group, 66

X//G, quotient variety, 162



Index

absolutely indecomposable, 142
acyclic quiver, 12

admissible ideal, 36
admissible sequence of sinks/sources, 64
admissible triangulation, 288

affine G-variety, 151
affine algebraic group, 150
algebra

basic, 41
graded, 158
opposite, 14

semi-simple, 40
algebraic group

affine, 150

linear, 151
rational representation, 151

almost split morphism, 86

AR Quiver, 83
arrow, 1

head, 1
tail, 1

associahedron, 288

generalized, 296
Auslander-Reiten Quiver, 83
Auslander-Reiten translation functors,

103

basic algebra, 41
binary form, 170
bounded derived category, 305

canonical decomposition, 247

canonical projective resolution, 26

Cartan form, 50

categorical quotient, 162

category

coproduct in, 4

derived, 305

hereditary, 24

localization of, 309
product in, 4

triangulated, 304

Cauchy formulas, 196

character

multiplicative, 176

cluster category, 316

cluster tilted algebra, 318

cohomological functor, 305

cokernel, 5

cokernel of a morphism, 4

column-standard tableau, 194

cone of a morphism, 307
conjugate partition, 193

content of a tableau, 194

coproduct in a category, 4

Coxeter functor, 66

Coxeter number, 67

Coxeter transformation, 67

cylinder of a morphism, 307

decomposable representation, 8

decorated representation, 294

defect, 121–123

deformed preprojective algebra, 132

derived category, 305

bounded, 305
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determinantal semi-invariants, 204
dimension vector, 3

signed, 294
direct sum, 4
distinguished triangle, 308
dominant weight, 192
dual representation, 155
duality functor, 103
Dynkin graphs, 52

epimorphism, 3
equivalence of extensions, 27
equivariant, 153
Euler characteristic, 32
Euler form, 32
Euler matrix, 33
exceptional object, 244
exceptional sequence, 260
extended Dynkin graphs, 53
extension, 27

equivalence, 27

finite representation type, 50
framed representation, 6
Frobenius automorphism, 143
functor

cohomological, 305
Fundamental Theorem of Invariant

Theory, 184

Gabriel’s Theorem, 68
general rank, 236
generalized associahedron, 296
generalized eigenspace, 15
generic ext, 209
generic factor-dimension vector, 209
generic hom, 209
generic subdimension vector, 209
GIT, Geometric Invariant Theory, 172
graded algebra, 158
Grassmann variety, 231
G-stable, 153
G-variety, 151

Haar measure, 155
head of an arrow, 1
hereditary category, 24
highest weight module, 192
highest weight vector, 192
Hilbert’s Finiteness Theorem, 158
Hilbert’s nullcone, 163
Hilbert-Mumford criterion, 170
homogeneous, 158

homogeneous tube, 124
homomorphism

of affine algebraic groups, 151
homotopic category, 307
homotopy, 306

ideal of morphisms, 74
indecomposable representation, 8
indivisible dimension vector, 135
injective envelope, 97
injective representation, 20
invariant ring, 154
irreducible morphism, 77
irreducible representation, 8

of an algebraic group, 160
isomorphism, 3

of affine algebraic groups, 151
isotropic root, 249

Jacobian algebra, 320
Jacobian ideal, 320
Jacobson radical, 39
Jordan block, 10
Jordan normal form, 10

kernel, 5
kernel of a morphism, 4
Kronecker quiver, 118
Kronecker symbol, 33
Krull-Remak-Schmidt Theorem, 16

lattice permutation, 195
Le Bruyn-Procesi Theorem, 189
left orthogonal category, 260
length of a Weyl group element, 136
linear algebraic groups, 151
linearly reductive, 155
Littlewood-Richardson coefficients, 195
Littlewood-Richardson rule, 195
localization of a category, 309

max spectrum, 162
max spectrum of a ring, 162
minimal almost split morphism, 86
minimal morphism, 86
minimal presentation, 100
module

injective, 20
projective, 20
semi-simple, 40

moment map, 132
monomorphism, 3
Morita equivalent, 43
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morphism, 2
cokernel, 4
kernel, 4

multiplicative character, 164, 176

Nakayama Lemma, 39
non-homogeneous tube, 124
nullcone, 163

one-parameter subgroup, 170
opposite algebra, 14
opposite quiver, 14
orbit category, 315
orbit functor, 315
oriented cycle, 12
orthogonal category

left, 260
right, 260

orthogonal idempotents, 13

partial exceptional sequence, 260
partial tilting module, 256
partition, 193
path, 11

trivial, 11
path algebra, 11
polarization, 185
polynomial representation, 191
potential, 320
prehomogeneous dimension vector, 257
preinjective, 116
preinjective representation, 123
preprojective, 114
preprojective algebra, 115
preprojective representation, 123
primitive isotropic root, 122
Procesi’s Theorem, 188
product in a category, 4
progenerator, 45
projective cover, 98
projective representation, 20
projective variety over a cone, 167

quasi-isomorphism, 306
quiver, 1

acyclic, 12
arrow, 1
opposite, 14
vertex, 1

quiver representation, 2
morphisms, 2

quotient category, 74

radical, 39
rational representation

of an algebraic group, 151
real roots, 138
reductive, 155

linearly, 155
regular action, 151
regular representation, 123
representation

decomposable, 8
decorated, 294
framed, 6
indecomposable, 8
injective, 20
irreducible, 8
polynomial, 191
projective, 20
simple, 8
trivial, 8

representation of a quiver, 2
representation space, 6
retraction, 76
Reynolds operator, 155
right orthogonal category, 260
ring of semi-invariants, 165
Ringel form, 32

Schofield semi-invariants, 204
Schur functor, 194
Schur representation of GL(V ), 193
Schur representation of a quiver, 244
Schur root, 244
Schur’s Lemma, 160
section, 76
semi-invariant, 164
semi-simple algebra, 40
semi-simple module, 40
semi-stable, 167
shift functor, 307
σ-semi-stable, 177
σ-stable, 177
signed dimension vector, 294
simple representation, 8
simplicial complex, 288
sink, 59
socle, 99
source, 59
spectrum of a ring, 162
stable, 169
stalk complex, 310
subquiver, 1
subrepresentation, 3
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of an algebraic group, 160

tableau, 194
column-standard, 194
content of, 194

tail of an arrow, 1
tensor algebra, 13
tilting module, 254
Tits form, 50
top, 99
translation functors, 103
transpose, 100
triangle-equivalence, 305
triangulatied category, 304
triangulation

admissible, 288
triangulation of a category, 304
trivial path, 11
trivial representation, 8

unitary group, 156

vertex, 1

Wedderburn’s Theorem, 47
weight, 176
weight space decomposition, 192
Weyl group, 136

Yoneda extension, 27
Young diagram, 193
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