An Introduction to Quiver Representations

Harm Derksen

Jerzy Weyman

An Introduction to Quiver Representations

An Introduction to Quiver Representations

Harm Derksen
Jerzy Weyman

EDITORIAL COMMITTEE

Dan Abramovich
Daniel S. Freed (Chair)
Gigliola Staffilani
Jeff A. Viaclovsky

2010 Mathematics Subject Classification. Primary 16G20, 16G10, 16G70, 14L24, 13A50.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-184

Library of Congress Cataloging-in-Publication Data

Derksen, Harm, 1970- | Weyman, Jerzy, 1955-
Title: An introduction to quiver representations / Harm Derksen, Jerzy Weyman.
Description: Providence, Rhode Island: American Mathematical Society, [2017] | Series: Graduate studies in mathematics ; volume 184 | Includes bibliographical references and index.
Identifiers: LCCN 2017016426 | ISBN 9781470425562 (alk. paper)
Subjects: LCSH: Directed graphs. | Representations of graphs. | Vector spaces. | AMS: Associative rings and algebras - Representation theory of rings and algebras - Representations of Artinian rings. msc | Associative rings and algebras - Representation theory of rings and algebras - Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers. msc | Algebraic geometry - Algebraic groups - Geometric invariant theory. msc|Commutative algebra - General commutative ring theory - Actions of groups on commutative rings; invariant theory. msc
Classification: LCC QA166.15 .D47 2017 | DDC 512/.46-dc23
LC record available at https://lccn.loc.gov/2017016426

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center's RightsLink ${ }^{\circledR}$ service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.
Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.
(C) 2017 by the authors. All rights reserved.

Printed in the United States of America.
(®) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
$10987654321 \quad 222120191817$

Contents

Preface ix
Chapter 1. Introduction 1
§1.1. Basic Definitions and Examples 1
§1.2. The Category of Quiver Representations [3
§1.3. Representation Spaces 6
§1.4. Indecomposable Representations 8
§1.5. The Path Algebra 11
§1.6. Duality 14
§1.7. The Krull-Remak-Schmidt Theorem 15
§1.8. Bibliographical Remarks 17
Chapter 2. Homological Algebra of Quiver Representations 19
§2.1. Projective and Injective Modules 19
§2.2. Projective and Injective Quiver Representations 22
§2.3. The Hereditary Property of Path Algebras 24
§2.4. The Extensions Group 27
§2.5. The Euler Form 32
§2.6. Bibliographical Remarks 3
Chapter 3. Finite Dimensional Algebras 35
§3.1. Quivers with Relations 35
§3.2. The Jacobson Radical 38
§3.3. Basic Algebras 41
§3.4. Morita Equivalence 43
§3.5. Bibliographical Remarks 47
Chapter 4. Gabriel's Theorem 49
§4.1. Quivers of Finite Representation Type 50
§4.2. Dynkin Graphs 52
§4.3. The Reflection Functors 57
§4.4. The Coxeter Functor 64
§4.5. Examples 69
§4.6. Bibliographical Remarks 71
Chapter 5. Almost Split Sequences 73
§5.1. Ideals of Morphisms in the Module Categories 73
§5.2. Irreducible Morphisms 77
§5.3. The Auslander-Reiten Quiver 83
§5.4. The Notion of an Almost Split Sequence 86
§5.5. Bibliographical Remarks 94
Chapter 6. Auslander-Reiten Theory 97
§6.1. Injective Envelopes and Projective Covers 97
§6.2. The Transpose Functor 100
§6.3. The Translation Functor for Quivers 102
§6.4. Auslander-Reiten Duality 103
§6.5. Coxeter Functors Revisited 107
$\S 6.6$. The Auslander-Reiten Quiver for Hereditary Algebras 111
§6.7. The Preprojective Algebra 114
§6.8. Bibliographical Remarks 116
Chapter 7. Extended Dynkin Quivers 117
§7.1. Representations of the Kronecker Quiver 118
§7.2. The Auslander-Reiten Quiver of the Kronecker Quiver 121
§7.3. AR Quivers for other Extended Dynkin Types 122
§7.4. Bibliographical Remarks 129
Chapter 8. Kac's Theorem 131
§8.1. Deformed Preprojective Algebras 131
§8.2. Reflections 136
§8.3. Root Systems 138
§8.4. Quiver Representations over Finite Fields 142
§8.5. Bibliographical Remarks 147
Chapter 9. Geometric Invariant Theory 149
§9.1. Algebraic Group Actions 150
§9.2. Linearly Reductive Groups 155
§9.3. The Geometry of Quotients 162
§9.4. Semi-Invariants and the Sato-Kimura Lemma 164
§9.5. Geometric Invariant Theory 167
§9.6. The Hilbert-Mumford Criterion 169
§9.7. GIT for Quiver Representations 172
§9.8. GIT Quotients with Respect to Weights 176
§9.9. Bibliographical Remarks 182
Chapter 10. Semi-invariants of Quiver Representations 183
§10.1. Background from Classical Invariant Theory 184
§10.2. The Le Bruyn-Procesi Theorem 187
§10.3. Background from the Representation Theory of GL n 191
§10.4. Semi-invariants and Representation Theory 197
§10.5. Examples for Dynkin Quivers 199
§10.6. Schofield Semi-invariants 204
$\S 10.7$. The Main Theorem and Saturation Theorem 206
§10.8. Proof of the Main Theorem 211
§10.9. Semi-invariants for Dynkin Quivers 216
§10.10. Semi-invariants for Extended Dynkin Types 218
§10.11. More Examples of Rings of Semi-invariants 225
§10.12. Schofield Incidence Varieties 231
§10.13. Bibliographical Remarks 240
Chapter 11. Orthogonal Categories and Exceptional Sequences 243
§11.1. Schur Representations 244
§11.2. The Canonical Decomposition 246
§11.3. Tilting Modules 254
§11.4. Orthogonal Categories 259
§11.5. Quivers with Two Vertices 266
§11.6. Two Sincerity Results 269
§11.7. The Braid Group Action on Exceptional Sequences 270
§11.8. Examples 273
§11.9. An Algorithm for the Canonical Decomposition 275
§11.10. Bibliographical Remarks 285
Chapter 12. Cluster Categories 287
§12.1. A Combinatorial Model for Type \mathbf{A}_{n} 288
§12.2. Cluster Combinatorics and Decorated Representations 294
§12.3. Triangulated Categories and Derived Categories 303
$\S 12.4$. The Derived Category of Quiver Representations 310
§12.5. Cluster Categories 316
§12.6. Cluster Tilted Algebras 318
§12.7. Bibliographical Remarks 322
Notation 325
Index 327
Bibliography 331

Preface

The idea of writing this book came from the collaboration of the authors. We started working on quiver representation when the first author visited Northeastern University as a Research Scholar in the academic year 1997/1998. We both came from other fields of algebra so we had to learn the subject from scratch. At the same time we were interested in connections of quiver representations with invariant theory, representations of algebraic groups, and algebraic geometry.

This experience made us realize that (except for Crawley-Boevey's notes 18 available online), there is no introductory text which would allow a person without any knowledge of Artin algebras to learn the subject quickly.

Later both authors taught courses on quiver representations at University of Michigan and Northeastern University, respectively. The second author also taught a two month course on quiver representations at Tor Vergata University in Rome in the spring of 2007.

We are grateful to Calin Chindris, Jiarui Fei, Ryan Kinser, Andrea Appel, Andrew Carroll, Sachin Gautam, Daniel Labardini, Kavita Sutar, Salvatore Stella, Riccardo Aragona, Ada Boralevi, Cristina DiTrapano, Luca Moci, and other students who took part in these courses.

The book is addressed to non-specialists, who want to learn the subject without going through the extended preparation in algebra, just starting from basic linear algebra. It turned out to be impossible to be completely elementary, so in some places we use some basic algebraic geometry (mainly the dimension counts).

We do not prove the results in full generality, working over the field \mathbb{C} of complex numbers. We also work mostly with acyclic quivers. We only cover Auslander-Reiten duality in the case of hereditary algebras.

The book reflects our point of view, so the semi-invariants are covered in detail and we stress their role in our approach. Some of the results could be proved just using stability conditions without mentioning semiinvariants, but we find the combinatorics of the rings of semi-invariants quite fascinating.

Still many important topics are left out, for example, Ringel-Hall algebras and Nakajima quiver varieties.

In recent years the field developed very quickly. New concepts and connections emerged. We wanted this development to be reflected in the book, hence there are chapters on orthogonal categories, exceptional sequences and cluster categories.

We stress the connections of quiver representations with representations of algebraic groups and moduli problems.

The authors thank the National Science Foundations for its support during the writing of this book.

We discussed the subject of the book with many mathematicians, with some of whom we coauthored our papers. We benefited from discussions with Prakash Belkale, Calin Chindris, Bill Crawley-Boevey, Jose Antonio de la Pena, Jiarui Fei, Lutz Hille, Kiyoshi Igusa, Ryan Kinser, Mark Kleiner, Visu Makam, Kent Orr, Charles Paquette, Idun Reiten, Claus Ringel, Ralf Schiffler, Aidan Schofield, Gordana Todorov, Michel Van den Bergh, and Andrei Zelevinsky.

The second author also wants to thank Piotr Dowbor, Daniel Simson and Andrzej Skowroński whose questions about the invariant theory of quivers aroused his interest in the subject.

Notation

$[1, n]=\{1,2, \ldots, n\}, 195$
$\langle\alpha, \beta\rangle$, Euler form, 32
(α, β), Cartan form, 50
$\operatorname{add}(T)$, additive subcategory, 254
$|\alpha|, 3$
$\alpha \rightarrow \beta, 209$
$\alpha^{\oplus m}, 250$
$A-\bmod , 12$
$\mathbf{A}_{n}, \mathbf{D}_{n}, \mathbf{E}_{n}$, Dynkin graphs, 52
$\widehat{\mathbf{A}}_{n}, \widehat{\mathbf{D}}_{n}, \widehat{\mathbf{E}}_{n}$, extended Dynkin graphs, 53
$A^{\mathrm{op}}, 14$
$\operatorname{AR}\left(\Pi_{n+3}\right)$, AR quiver of $\Pi_{n+3}, 292$
$\mathrm{AR}(T)$, AR quiver of a triangulation, 291
A^{t}, transpose of the matrix $A, 151$
$\beta \hookrightarrow \alpha, 209$
$B_{Q}(\alpha)$, Tits form, 50
C^{+}, C^{-}, Coxeter functors, 66
\mathbb{C}, complex numbers, 1
c, Coxeter transformation, 67
${ }^{\perp} C$, left orthogonal category, 260
C^{\perp}, right orthogonal category, 260
$C(f)$, cone of a morphism, 307
χ, multiplicative character, 164,176
$\chi(V, W)$, Euler characteristic, 32
$c_{\lambda, \mu}^{\nu}$, LR coefficient, 195
$\operatorname{Com}(\mathcal{A})$, category of complexes, 306
$\operatorname{Com}^{b}(\mathcal{A})$, category of bounded complexes, 306
$\mathbb{C} Q$, path algebra, 11
$\mathcal{C}(V), 26$
$\mathbb{C}[X]^{G}$, invariant ring, 154
C_{x}^{-}, reflection functor, 60
C_{x}^{+}, reflection functor, 59
$\operatorname{Cyl}(f)$, cylinder of a morphism, 307
D, duality functor, 103
$\Delta\left(\mathbf{A}_{n}\right)$, associahedron, 288
$\Delta(i, j, k)$, triangle with vertices i, j, k, 288
Δ_{Q}, simplicial complex associated to Q, 297
$\delta_{i, j}$, Kronecker symbol, 33
$\underline{\operatorname{dim}}(V)$, dimension vector, 3
$D(\lambda)$, Young diagram of λ, 193
$\underline{d}_{T,[i, j]}$, dim. vector of triangulation and diagonal, 291
$d_{W}^{V}, 2,28$
ϵ_{i}, dimension vector of simple $S_{i}, 66$
$\operatorname{Ext}_{Q}^{i}(V, W), 30$
e_{k}, elementary symmetric function, 154
$\operatorname{End}_{A}(P)=\operatorname{Hom}_{A}(P, P)$ endomorphism ring, 44
$E_{Q}\left(V, V^{\prime}\right), 295$
$\operatorname{Ext}(V, W)=\operatorname{Ext}^{1}(V, W), 27$
e_{x}, trivial path, 11
$\operatorname{ext}_{Q}(\alpha, \beta)$, generic ext, 209
\mathbb{F}_{q}, field with q elements, 143
\mathbb{G}_{a}, additive group, 150
GL_{a}, invertible $a \times a$ matrices, 6
$\mathrm{GL}_{\alpha}, 6$
$\mathrm{GL}_{\alpha, \sigma}, 180$
\mathbb{G}_{m}, the multiplicative group, 150
$\Gamma(Q)$, undirected graph of $Q, 50$
$\operatorname{Grass}(k, m)$, Grassmann, 231
$h a=h(a)$, head of a, प
$H^{k}(\mathcal{C})$, cohomology of a complex, 25
$\operatorname{Hom}_{Q}(V, W)$, morphism space, 2
$\operatorname{hom}_{Q}(\alpha, \beta)$, generic hom, 209
$h p=h(p)$, head of a path, 11
$\iota: G \rightarrow G$, inverse map, 150
I_{n}, the $n \times n$ identity matrix, 151
$\operatorname{Ind}(Q), 64$
$\mathrm{in}_{x}, 59$
I_{x}, injective representation, 22
$K^{b}(\mathcal{A})$, homotopy category, 307
$|\lambda|, 193$
$\lambda(\alpha), 133$
$\ell(w)$, length of $w, 136$
$m: G \times G \rightarrow G$, multiplication, 150
Mat $_{a, b}, a \times b$ matrices, 6
$\bmod -A, 12$
\mathbb{N}, nonnegative integers, 3
\mathcal{N}, Hilbert's nullcone, 163
O_{n}, the orthogonal group, 151
out $_{x}, 61$
$\langle p\rangle, 11$
$\mathrm{Perm}_{d}, 184$
$\mathrm{PGL}_{\alpha}, 175$
$\mathrm{PGL}_{\alpha, \sigma}, 180$
Φ, the Frobenius automorphism, 143
$\widetilde{\Phi}^{+}$, almost positive roots, 294
Π_{n+3}, regular $(n+3)$-gon, 288
$\operatorname{Pol}(f)$, polarization of $f, 185$
$\mathcal{P}_{u, v}(Q)$, preprojective algebra, 115
$\mathbb{P}(V)^{\text {ss }}$, semi-stable points, 168
$\mathbb{P}(X), 167$
P_{x}, projective representation, 22
$\pi: X \rightarrow X / / G$, quotient, 162
Q, quiver, [
Q_{0}, vertices, 1
Q_{1}, arrows, 1
$Q(T)$, quiver of a triangulation, 289
\mathcal{R}, Reynolds operator, 155
$\operatorname{rad}(A)$, Jacobson radical, [39
$\operatorname{Rep}_{\alpha}(Q)$, representation space, 6
$\operatorname{Rep}_{\alpha}(Q) / / \sigma \mathrm{GL}_{\alpha}, 180$
$\operatorname{Rep}_{\alpha}(Q)^{\text {ss }}, \operatorname{Rep}_{\alpha}(Q)^{\mathrm{s}}, 179$
$\operatorname{Rep}(Q)$, category of representations, 3
$\operatorname{Rep}(Q, J), 36$
$\sigma_{x}(\alpha)$, reflection of a vector, 58
sdimV, signed dimension vector, 294
$\tilde{\sigma}_{x}$, piecewise-linear reflection, 300
$\mathrm{SI}(G, V)$, ring of semi-invariants, 165
$\operatorname{SI}(Q, \beta)$, ring of semi-invariants, 166
SL_{β}, 166
S_{n}, symmetric group, 154
$\operatorname{Spec}(R)$, spectrum of a ring $R, 162$
$\sigma_{x}(Q)$, reflection of quiver, 58
$\Sigma(Q, \beta)$, the cone of weights, 209
\mathbb{S}_{λ}, Schur functor, 193
S_{x}, simple representation, 8
$t a=t(a)$, tail of a, \square
$T_{\alpha}, 175$
τ^{+}, τ^{-}, AR translation, 103
$t p=t(p)$, tail of a path, 11
trace (\cdot), trace of a linear map, 161
$\operatorname{Tr}(V)$, transpose of a module $V, 100$
U_{n}, unitary group, 156
$V^{\otimes(d, e)}$,184
V^{G}, space of G-invariants, 153
$V^{\text {s }}$, set of stable vectors, 169
$V^{\text {ss }}$, set of semi-stable points, 167
$V \oplus W$, direct sum, [
$V \perp W, V$ left orthogonal to $W, 260$
\mathcal{W} Weyl group, 66
$X / / G$, quotient variety, 162

Index

absolutely indecomposable, 142
acyclic quiver, 12
admissible ideal, 36
admissible sequence of sinks/sources, 64
admissible triangulation, 288
affine G-variety, 151
affine algebraic group, 150
algebra
basic, 41
graded, 158
opposite, 14
semi-simple, 40
algebraic group
affine, 150
linear, 151
rational representation, 151
almost split morphism, 86
AR Quiver, 83
arrow, 1
head, 1
tail, 1
associahedron, 288
generalized, 296
Auslander-Reiten Quiver, 83
Auslander-Reiten translation functors, 103
basic algebra, 41
binary form, 170
bounded derived category, 305
canonical decomposition, 247
canonical projective resolution, 26

Cartan form, 50
categorical quotient, 162
category
coproduct in, 4
derived, 305
hereditary, 24
localization of, 309
product in, 4
triangulated, 304
Cauchy formulas, 196
character
multiplicative, 176
cluster category, 316
cluster tilted algebra, 318
cohomological functor, 305
cokernel, 5
cokernel of a morphism, 4
column-standard tableau, 194
cone of a morphism, 307
conjugate partition, 193
content of a tableau, 194
coproduct in a category, 4
Coxeter functor, 66
Coxeter number, 67
Coxeter transformation, 67
cylinder of a morphism, 307
decomposable representation, 8
decorated representation, 294
defect, 121,123
deformed preprojective algebra, 132
derived category, 305
bounded, 305
determinantal semi-invariants, 204
dimension vector, 3
signed, 294
direct sum, 4
distinguished triangle, 308
dominant weight, 192
dual representation, 155
duality functor, 103
Dynkin graphs, 52
epimorphism, 3
equivalence of extensions, 27
equivariant, 153
Euler characteristic, 32
Euler form, 32
Euler matrix, 33
exceptional object, 244
exceptional sequence, 260
extended Dynkin graphs, 53
extension, 27
equivalence, 27
finite representation type, 50
framed representation, 6
Frobenius automorphism, 143
functor
cohomological, 305
Fundamental Theorem of Invariant Theory, 184

Gabriel's Theorem, 68
general rank, 236
generalized associahedron, 296
generalized eigenspace, 15
generic ext, 209
generic factor-dimension vector, 209
generic hom, 209
generic subdimension vector, 209
GIT, Geometric Invariant Theory, 172
graded algebra, 158
Grassmann variety, 231
G-stable, 153
G-variety, 151
Haar measure, 155
head of an arrow, 1
hereditary category, 24
highest weight module, 192
highest weight vector, 192
Hilbert's Finiteness Theorem, 158
Hilbert's nullcone, 163
Hilbert-Mumford criterion, 170
homogeneous, 158
homogeneous tube, 124
homomorphism
of affine algebraic groups, 151
homotopic category, 307
homotopy, 306
ideal of morphisms, 74
indecomposable representation, 8
indivisible dimension vector, 135
injective envelope, 97
injective representation, 20
invariant ring, 154
irreducible morphism, 77
irreducible representation, 8
of an algebraic group, 160
isomorphism, 3
of affine algebraic groups, 151
isotropic root, 249
Jacobian algebra, 320
Jacobian ideal, 320
Jacobson radical, 39
Jordan block, 10
Jordan normal form, 10
kernel, 5
kernel of a morphism, 4
Kronecker quiver, 118
Kronecker symbol, 33
Krull-Remak-Schmidt Theorem, 16
lattice permutation, 195
Le Bruyn-Procesi Theorem, 189
left orthogonal category, 260
length of a Weyl group element, 136
linear algebraic groups, 151
linearly reductive, 155
Littlewood-Richardson coefficients, 195
Littlewood-Richardson rule, 195
localization of a category, 309
max spectrum, 162
max spectrum of a ring, 162
minimal almost split morphism, 86
minimal morphism, 86
minimal presentation, 100
module
injective, 20
projective, 20
semi-simple, 40
moment map, 132
monomorphism, 3
Morita equivalent, 43
morphism, 2
cokernel, 4
kernel, 4
multiplicative character, 164176
Nakayama Lemma, 39
non-homogeneous tube, 124
nullcone, 163
one-parameter subgroup, 170
opposite algebra, 14
opposite quiver, 14
orbit category, 315
orbit functor, 315
oriented cycle, 12
orthogonal category
left, 260
right, 260
orthogonal idempotents, 13
partial exceptional sequence, 260
partial tilting module, 256
partition, 193
path, 11
trivial, 11
path algebra, 11
polarization, 185
polynomial representation, 191
potential, 320
prehomogeneous dimension vector, 257
preinjective, 116
preinjective representation, 123
preprojective, 114
preprojective algebra, 115
preprojective representation, 123
primitive isotropic root, 122
Procesi's Theorem, 188
product in a category, 4
progenerator, 45
projective cover, 98
projective representation, 20
projective variety over a cone, 167
quasi-isomorphism, 306
quiver, 1
acyclic, 12
arrow, 1
opposite, 14
vertex, 1
quiver representation, 2
morphisms, 2
quotient category, 74
radical, 39
rational representation of an algebraic group, 151
real roots, 138
reductive, 155
linearly, 155
regular action, 151
regular representation, 123
representation
decomposable, 8
decorated, 294
framed, 6
indecomposable, 8
injective, 20
irreducible, 8
polynomial, 191
projective, 20
simple, 8
trivial, 8
representation of a quiver, 2
representation space, 6
retraction, 76
Reynolds operator, 155
right orthogonal category, 260
ring of semi-invariants, 165
Ringel form, 32
Schofield semi-invariants, 204
Schur functor, 194
Schur representation of GL $(V), 193$
Schur representation of a quiver, 244
Schur root, 244
Schur's Lemma, 160
section, 76
semi-invariant, 164
semi-simple algebra, 40
semi-simple module, 40
semi-stable, 167
shift functor, 307
σ-semi-stable, 177
σ-stable, 177
signed dimension vector, 294
simple representation, 8
simplicial complex, 288
sink, 59
socle, 99
source, 59
spectrum of a ring, 162
stable, 169
stalk complex, 310
subquiver, 1
subrepresentation, 3
of an algebraic group, 160
tableau, 194
column-standard, 194
content of, 194
tail of an arrow, 1
tensor algebra, 13
tilting module, 254
Tits form, 50
top, 99
translation functors, 103
transpose, 100
triangle-equivalence, 305
triangulatied category, 304
triangulation
admissible, 288
triangulation of a category, 304
trivial path, 11
trivial representation, 8
unitary group, 156
vertex, 1
Wedderburn's Theorem, 47
weight, 176
weight space decomposition, 192
Weyl group, 136
Yoneda extension, 27
Young diagram, 193

Bibliography

[1] Abeasis, S., Del Fra, A., Kraft, H., The geometry of representations of A_{m}, Math. Ann. 256 (1981), 401-418.
[2] Assem, I., Brüstle, T., Schiffler, R., Cluster-tilted algebras as trivial extensions, Bull. London Math. Soc., 40 (2008), 151-162.
[3] Auslander, M., Reiten, I., Smalø, S., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, New York, 1995.
[4] Auslander, M., Reiten, I., Representation theory of Artin algebras III, Almost split sequences, Comm. in Algebra, 3 (1975), 269-310.
[5] Auslander, M., Reiten, I., Representation theory of Artin algebras IV, Invariants given by almost split sequences, Comm. in Algebra, 5 (1977), 443-518.
[6] Auslander, M., Reiten, I., Modules determined by their composition factors, Ill. Journal of Math., 29 (1985), 280-301.
[7] Belkale, P., Geometric proof of a conjecture by Fulton, Adv. in Math., 216 (2007), 346-357.
[8] Bernstein, I.N., Gelfand, I.M., Ponomarev, V.A., Coxeter functors and Gabriel's theorem, Russian Math. Surveys, 28 (1973), 17-32.
[9] Bobiński, G., Zwara, G., Normality of orbit closures for Dynkin quivers of type A_{n}, Manuscripta Math., 105 (2001), no. 1, 103-109.
[10] Bobiński, G., Zwara, G., Schubert varieties and representations of Dynkin quivers, Colloq. Math., 94 (2002), no. 2, 285-309.
[11] Brion, M., Multiplicity-free sub varieties of flag varieties, Commutative Algebra (Grenoble/Lyon, 2001), 13-23, Contemp. Math 331, Amer. Math. Soc., Providence, RI, 2003.
[12] Buan, A.B., Marsh, R., Reineke, M., Reiten, I., Todorov, G., Tilting theory and cluster combinatorics, Adv. in Math., 204 (2006), no. 2, 572-618.
[13] Buan, A.B., Marsh, R., Reiten, I., Cluster-tilted algebras, Trans. Amer. Math. Soc., 359 (2007), 323-332.
[14] Caldero, Ph., Chapoton, F., Schiffler, R., Quivers with relations arising from clusters (A_{n} case), Trans. Amer. Math.Soc., 358, no. 3, (2006), 359-376.
[15] Chindris, C., Derksen, H., Weyman, J., Counterexamples to Okounkov's log-concavity conjecture, Compos. Math. 143 (2007), no. 6, 1545-1557.
[16] Crawley-Boevey, W., Exceptional sequences of representations of quivers, Representations of algebras (Ottawa, ON 1992), CMS Conf. Proc., 14, Amer. Math. Soc., Providence, RI, 1993.
[17] Crawley-Boevey, W., Subrepresentations of general representations of quivers, Bull. London Math. Soc., 28 (1996), 363-366.
[18] Crawley-Boevey, W., Lectures on Representations of Quivers, preprint available from Crawley-Boevey's home page.
[19] Crawley-Boevey, W., Holland, M.P., Non-commutative deformations of Kleinian singularities, Duke Math. J., 92 (1998), 605-635.
[20] Crawley-Boevey, W., Van den Bergh, M., Absolutely indecomposable representations and Kac-Moody Lie algebras, Invent. Math. 155 (2004), no. 3, 537-559.
[21] Carroll, A., Weyman, J., Noncommutative Birational Geometry, Representations and Combinatorics, "Contemporary Mathematics", Proceeding of the Special AMS session "Noncommutative birational geometry and cluster algebras" held during the Annual meeting of the AMS (Boston, 2012), edited by A. Berenstein, V. Retakh, 111-136, AMS, 2013.
[22] Derksen, H., Fei, J., General presentations of algebras, Adv. Math. 278 (2015), 210237.
[23] Derksen, H., Makam, V., Polynomial degree bounds for matrix semi-invariants, Adv. Math. 310 (2017), 44-63.
[24] Derksen, H, Makam, V., Generating invariant rings of quivers in arbitrary characteristic, J. Algebra 489 (2017), 435-445.
[25] Derksen, H. Weyman, J. Semi-invariants of quivers and saturation for LittlewoodRichardson coefficients, J. Amer. Math. Soc. 13 (2000), no. 3, 467-479.
[26] Derksen, H., Weyman, J., On the canonical decomposition of quiver representations, Compositio Math. 133 (2002), no. 3, 245-256.
[27] Derksen, H. Weyman, J., On the Littlewood-Richardson polynomials, J. Algebra 255 (2002), no. 2, 247-257.
[28] Derksen, H., Weyman, J., Semi-invariants for quivers with relations, Special issue in celebration of Claudio Procesi's 60 -th birthday, J. Algebra 258 (2002), no. 1, 216-227.
[29] Derksen, H., Weyman, J., Generalized quivers associated to reductive groups, Colloq. Math. 94 (2002), no. 2, 151-173.
[30] Derksen, H., Weyman, J., The combinatorics of quiver representations, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 1061-1131.
[31] Derksen, H. Schofield, A., Weyman, J., On the number of sub representations of a general quiver representation, J. London. Math. Sco. (2) 76 (2007), no. 1, 135-147.
[32] Derksen, H., Weyman, J., Zelevinsky, A., Quivers with potential and their representations I. Mutations, Selecta Math. (N.S.) 14 (2008), no. 1, 59-119.
[33] Derksen, H., Weyman, J., Zelevinsky, A., Quivers with potential and their representations II. applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749-790.
[34] Dlab, V., Ringel, M., Indecomposable Representations of Graphs and Algebras, Mem. Amer. Math. Soc., 173, 1976.
[35] Domokos, M., Relative invariants for representations of finite dimensional algebras, Manuscripta Math., 108 (2002), 123-133.
[36] Domokos, M., Zubkov, A.N., Semi-invariants of quivers as determinants, Transformation Groups 6 (2001), No. 1, 9-24.
[37] Donovan, P., Freislich, M.R., The Representation Theory of Finite Graphs and Associative Algebras, Carleton Lecture Notes, Ottawa 1973.
[38] Assem, I., Simson, D., Skowroński, A., Elements of the Representation Theory of Associative Algebras, London Mathematical Society, Student Texts 65, Cambridge University Press, 2006.
[39] Fei, J., Cluster algebras, invariant theory, and Kronecker coefficients I, Adv. Math. 310 (2017), 1064-1112.
[40] Fei, J. Cluster algebras and semi-invariant rings II: projections, Math. Z. 285 (2017), no. 3-4, 939-966.
[41] Fei, J., The upper cluster algebras of IART quivers I. Dynkin, arXiv 1603.02521.
[42] Fomin, S., Shapiro, M., Thurston, D., Cluster algebras and triangulated surfaces, I. Cluster complexes, Acta Math., 201 (2008), no 1, 83-146.
[43] Gabriel, P., Roiter, A.V., Representations of finite dimensional algebras, Encyclopaedia of Mathematical Sciences, no. 73, Springer-Verlag, 2nd edition, 1997.
[44] Gelfand, S.I., Manin, Y.I., Methods of Homological Algebra, Springer Monographs in Mathematics, Springer, 2003.
[45] Goodman, R., Wallach, N.R., Representations and Invariants of Classical Groups, Cambridge University Press, 1998,
[46] Gorodentsev, A.L., Rudakov, A.N., Exceptional vector bundles on projective spaces, Duke Math. J., 54 (1987), no. 1, 115-130.
[47] Happel, Triangulated categories in the Representation Theory of Finite Dimensional Algebras, London Mathematical Society Lecture Notes Series 119, Cambridge University Press, 1988.
[48] Hausel, T, Letellier, E., Rodrigues-Villegas, F., Positivity of Kac polynomials and DT-invariants of quivers, Annals of Mathematics (2) 177 (2013), no. 3, 1147-1168.
[49] Hille, L., On the volume of a tilting module, Abh. Math. Sem. Univ. Hamburg 76 (2006), 261-277.
[50] Humphreys, J., Linear Algebraic Groups, Graduate Texts in Mahematics, vol. 21, Springer, 1975.
[51] Igusa, K., Orr, K., Todorov, G., Weyman, J., Cluster complexes via semi-invariants, Compositio Mathematica 145, no. 4 (2009), 1001-1034.
[52] Ikenmeyer, Ch., Small Littlewood-Richardson coefficients, J. Algebraic Comb. 44 (2016), no. 1, 1-29; Erratum, J. Algebraic Comb. 44 (2016), no. 1, 31-32.
[53] Kac, V., Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), no. 1, 57-92.
[54] Kac, V., Infinite root systems, representations of graphs and invariant theory II, J. Algebra 78 (1982), no. 1, 141-162.
[55] Kac, V., Root systems, representations of quivers and invariant theory, in: Invariant Theory (Montecatini 1982), Lecture Notes in Mathematics, 996, Springer, Berlin, 1983).
[56] Keller, B., Triangulated orbit categories, Documenta Mathematica 10 (2005), 551581, arXiv 0503240.
[57] King, A.D., Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser (2) 45 (1994), no, 180, 515-530.
[58] King, R., Tollu, Ch., Toumazet, F., Stretched Littlewood-Richardson polynomials and Kostka coefficients, CRM Proceedings and Lecture Notes 34 (2004), 99-112.
[59] Kleiner, M., The graded preprojective algebra of a quiver, Bull. London Math. Soc. 36 (2004), no. 1, 13-22.
[60] Kraft, H., Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1., Fried. Viehweg \& Sohn, Braunschweig, 1984.
[61] Lakshmibai, V., Magyar, P., Degeneracy schemes, quiver schemes, and Schubert varieties, Internat. Math. Res. Notices 1998, no. 12, 627-640.
[62] Le Bruyn, L., Procesi, C., Semisimple representations of quivers, Trans. Amer. Mah.Soc. 317 (1990), no. 2, 585-598.
[63] MacDonald, I.G., Symmetric functions and Hall polynomials, 2nd edition, Oxford Mathematical Monographs, Oxford University Press, 1995.
[64] Marsh, R., Reineke, M., Zelevinsky, A., Generalized associahedra via quiver representations, Trans. Amer. Math. Soc, 355 (2003), 4171-4186.
[65] Mumford, D., Fogarty, J., Kirwan, F., Geometric Invariant Theory. Third edition. Results in Mathematics and Related res (2), 34, Springer-Verlag, Berlin, 1994.
[66] Nazarova, L.A., Representations of quivers of infinite type, Izv. Akad. Nauk SSSR, Ser. Mat. 37 (1973), 752-791.
[67] Obaid, M., Nauman, K., Al-Shammakh, W.S.M., Fakieh, W., Ringel, C.M., The number of complete exceptional sequences for a Dynkin algebra, Colloq. Math. 133 (2013), no. 2, 197-210.
[68] Ringel, C.M., The braid group action on the set of exceptional sequences of a hereditary Artin algebra, in: Contemporary Mathematics volume 171, 1994, 339-352.
[69] Ringel, C.M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics, 1099, 1984.
[70] Rotman, J., An Introduction to Homological Algebra, 2-nd edition, Universitext, No. 223, Springer, 2009.
[71] Sato, M., Kimura, T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155.
[72] Schofield, A., Semi-invariants of quivers, J. London Math. Soc. (2) (1991), no. 3, 385-395.
[73] Schofield, A., General representations of quivers, Proc. London Math. Soc. (3) 65 (1992), no. 1, 46-64.
[74] Schofield, A., The internal structure of real Schur representations, preprint, 1988.
[75] Schofield, A., Van den Bergh, M., Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math. (N.S.) 12 (2001), no. 1, 125-138.
[76] Sherman, C., Quiver generalization of a conjecture of King, Tollu and Toumazet, J. Algebra 480 (2017), 487-504.
[77] Skowroński, A., Weyman, J., The algebras of semi-invariants of quivers, Transform. Groups 5 (2000), no. 4, 361-402.
[78] Zwara, G., Smooth morphisms of module schemes, Proc. London Math. Soc., (3) 84 (2002), no. 3, 539-558.

This book is an introduction to the representation theory of quivers and finite dimensional algebras. It gives a thorough and modern treatment of the algebraic approach based on Auslander-Reiten theory as well as the approach based on geometric invariant theory. The material in the opening chapters is developed starting slowly with topics such as homological algebra, Morita equivalence, and Gabriel's theorem. Next, the book presents Auslander-Reiten theory, including almost split sequences and the Auslander-Reiten transform, and gives a proof of Kac's generalization of Gabriel's theorem. Once this basic material is established, the book goes on with developing the geometric invariant theory of quiver representations. The book features the exposition of the saturation theorem for semi-invariants of quiver representations and its application to Littlewood-Richardson coefficients. In the final chapters, the book exposes tilting modules, exceptional sequences and a connection to cluster categories.

The book is suitable for a graduate course in quiver representations and has numerous exercises and examples throughout the text. The book will also be of use to experts in such areas as representation theory, invariant theory and algebraic geometry, who want to learn about applications of quiver representations to their fields.

\squareFor additional information and updates on this book, visit www.ams.org/bookpages/gsm- 184

