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The equations of conjugacy classes 
of nilpotent matrices 

J. Weyman * 
Northeastern University, Department of Mathematics, Boston, MA 02115, USA 

Section 1. Introduction 

Let X be the set of n • n matrices over a field k of characteristic 0. For a partition 
u = (nl, u2 . . . . .  us) of n we denote by O (u) the set of nilpotent matrices in X with 
Jordan blocks of sizes ul,  . . . ,  us. We are interested in equations of the closure of 
O (u) in Xi. e. in the generators of the ideal of polynomial functions on Xvanishing 
on O (u). For u = (n), O (u) is the set of all nilpotent matrices and an old result of 
Kostant proved in the fundamental paper [K] says that the equations are the 
GL(n) - invariants in the coordinate ring of X (GL(n) acts on X by conjugation). 
The problem of calculating the equations of  O (u) in general was proposed by 
DeConcini and Procesi in [D-P] where the authors calculated the generators of 
ideals of schematic intersections O (u)c~ D (D is the set of diagonal matrices). 
DeConcini and Procesi, Tanisaki [T] and Eisenbud and Saltman [E-S] proposed 
different sets of generators of the ideals of O (u). It follows from our main result 
that all their conjectures are true. Moreover, we construct minimal sets of 
generators for the ideals of  O(u). 

We also calculate the generators of ideals of "rank varieties" introduced by 
Eisenbud and Saltman in [E-S]. 

The method of  proof comes from the techniques used to calculate the syzygies 
of determinantal varieties ([L], [J-P-W], [P-W]). There is a canonical desingularis- 
ation Yv of O (u) which is a complete intersection in X x GL(n)/Pv for a suitable 
parabolic subgroup Pv of GL(n) (v denotes the conjugate partition of n). The 
syzygies of  Cyy over (9 x • ~L(,)/P, are given by the Koszul complex on the cotangent 
bundle of GL(n)/Pv. One uses Bott's Theorem to calculate higher direct images of 
the exterior powers of this bundle to find the generators of the ideals of O(u). 

The paper is organized as follows. Section 2 contains preliminaries concerning 
representation theory and the use of higher direct images to calculate syzygies. In 
Sect. 3 we use Bott's Theorem to construct complexes MY( �9 ) giving (non-minimal) 
resolutions of the ideals 3v of O (u). We also give a precise description of the 0-th 
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230 J. Weyman 

and 1-st term in M v. Using this we recover the theorem of  Kraft  and Procesi [K-P] 
that the varieties O(u) are normal. This proof  of normality is shorter and 
conceptually simpler than the original one. In Sect. 4 we identify the generators of  
the ideals .~ as linear combinations of  minors of  various sizes, thus proving the 
conjecture of Tanisaki. Section 5 contains the description of  minimal sets of  
generators of 3,'s. Finally in Sect. 6 we apply our technique to obtain formulas for 
the decomposition o f  the coordinate ring of  O (u) into representations of GL (n). 
This leads to nice inductive formulas for generalized exponents of  Kostant. As a 
consequence we get also the inductive formulas for Kostka-Foulkes polynomials. 

Section 2. Preliminaries and notation 

(2.0) Notation. We denote by E our basic vector space of  dimension n. The space 
X is identified with Horn (E, E) = E* | E, the space of  endomorphisms A: E ~ E. 
The coordinate ring of  X is the polynomial ring in the entries Aij(1 < i,j< n). We 
identify this ring with the symmetric algebra 5P(E * |  For  a given basis 
(el,  . . . ,  e,) in E the  entry Aij becomes e* | ei. We will use this identification freely 
throughout  the paper. 

A partition of  the natural number m is a non-increasing sequence 
a = ( a l , a z , . . . , a ~ )  such that a ~ + . . .  + a ~ = m .  We identify the partitions 
(a~, . . . ,  a~) and (ax . . . . .  a~, 0). We write la[ = m  i f a  is a partition o fm .  

The conjugate partition to a is the partition a ~ = (a~ . . . .  , a ] )  where 

a~ = ~(i[a~=>j) .  

Let u = (Ul, . . . ,  us) be a partition of  n. O (u) denotes the conjugacy class of  
nilpotent matrices with Jordan blocks of sizes u~ . . . . .  us. We denote by 
v = (vx, . . . ,  vt) the dual partition to u. ~v is the ideal of  elements in 50 (E* |  
vanishing on O (n). We denote by X, the Zariski closure of  O (u). One should note 
that if v = ( v  I . . . . .  vt) then O(u) consists of  such A: E ~ E  that 
d i m K erA  ~=vl  + . . .  +vz. 

In [E-S] the authors introduced a more general notion of rank varieties. Let 
v = (vl, . . . ,  vt) be the partition of  a number/ ,  l _< n. Then we consider the variety 
of  all A: E ~  E such that dim KerAi ~ v~ + . . .  + v~ for all I. We will denote this 
variety also by X~. When l < n then k'~ contains non-nilpotent endomorphisms. 
The methods of  this paper are valid for those more general varieties. One should 
note that for an arbitrary endomorphism A: E ~  E there exists a partition v such 
that dim KerA i = vl + . . .  + vi for all i. 

Le t / ,  J be two subsets of  { 1,2 . . . . .  n} of cardinality i. We denote by (I, J) the 
minor of  A with the rows from I and columns from J. 

The ring of  GL(n) invariants in ~ ( E * |  is described by Chevalley's 
Theorem. It says that this ring is the polynomial ring in n variables t~ (1 < i <  n) 
where t~ is homogeneous of  degree i. More precisely t /as  a function on X is the 
coefficient of T"-~ in the characteristic polynomial PA (T). In terms of minors t~ is 
the sum of  principal i x i minors i.e. 

t i = ~ (I, I) .  
1 ~ { 1 , 2  . . . . .  n},~.I=i 
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In Sect. 4 we will use the natural maps 

A: A a + b E ~  A a E |  AbE 

m: A a E |  ABE--* A"+bE. 

The map m is the exterior multiplication, A is the dual of exterior multiplication on 
E* and is given by the following formula 

A(el  A . . .  A e,+b) = ~ ' sgn ( I , I ' )  e t |  r 

where sgn(I, I ' )  is the sign of  the permutation ordering (I, I'), I '  denoting the 
complement of L 

We will call m the multiplication map and A the diagonal map. 

(2.1) Geometric calculation of  syzygies. The basic theorem in our approach 
comes from Kempf 's  method [Ke]. The exact result we need is a version of  
Theorem from section 1 from [P-W]. 

Theorem. Let X ' c  X be a closed subvariety o f  the affine space X =  A N. Let 
Y' c X x V be a desingularisation o f  X '  ( V is some projective variety). We assume 
that the sheaves Cv (i) for  i > 0 have no higher cohomology. Let us assume that Y'  is a 
locally complete intersection in X x V and that there exists a vector bundle Jff on 
X x V, inducedJ?om V, such that the locally J?ee resolution o./'(5 r, over ~r x • v is given 
by the Koszul complex A ",IV'. Let 7r be the projection n:Xx V--+ X. 

Then there exists a sequence o f  free 6'x-modules 

F: O--,  F,, ~ F ~ _  ~ --, . . . - - , F , - - , F o - - , F _ , - ~  . . .  

where F~ = E NJz~, (A/+JJV) and such that the homology of  F in positive degrees is 
zero and H_ i(F) = ~ i n ,  Or,. In particular i f  F i = O for  i < 0 then the normalisation 
X'  has rational singularities and i f  F o = C x then X '  is normal. 

Proof. The only thing we have to do is to construct the complex B'" existence of 
which one assumes in Sect. 1 of  [P-W]. We consider the dual complex 
P*" = ( A ' Y ) * .  There exists a number s > 0 such that P*'(s) consists of 0 regular 
sheaves in the sense of  Quillen ([Q], w 8). We can thus construct the double complex 
B * "  whose t-th column is a canonical resolution of  P*t. The term B* ~t is of the 
form Ti~ | (9 x • v ( -  s -  i). By dualizing we get the double complex B'" whose terms 
are Ti* |215  ) so they are z~, - acyclic by our assumption on V. Double 
complex B'" satisfies properties (3,3') of  Theorem 1 in [P-W] because the 
horizontal maps cover the map of  degree 1 in coordinate functions on X so they 
can be chosen to be of  degree 1. One should also mention that in the case of  
~ r c ,  (9 r, = 0 for i >  0 (which we are interested in) another B'" is just S-  (AN~,~) 
where ~ is the quotient A N / X  and S .  (AN--* ~) denotes the symmetric power of  the 
map A N ~  (compare [A-B-W]). 

(2.2) Flag varieties. In our application of  the above theorem, V will be a flag 
variety, so we fix here some notation concerning flags. For  a partition v of a 
number l, 1 __< n, we will denote by G/P, the partial flag variety. Its typical point is a 
sequence of subspaces of  E 

0 ~  R~ ~ R~+~ ~ . . .  ~ Rv~+~+. . .+~c E.  
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The subscript of  each subspace denotes its dimension. We will also use the symbol 
R~ to denote the tautological subbundle of  dimension i on the flag variety. Q,_~ 
denotes the corresponding factorbundle. Thus on a flag variety we have 
tautological exact sequences 0 ~ R~-~ E ~  Q,_ ~ 0. E denotes here the trivial 
induced bundle. 

(2.3) Representations o f G  = GL(n) .  Let G = GL(n)  be the general linear group. 
Let a = (a~, a 2 . . . .  , a,) be a dominant  integral weight for G (this means that 
a~ ~ a 2 ~ _ ~  . . .  ~ a  n and al a~'s are integers). We denote by S~ . . . . . . . . . . . .  ) E the 
irreducible representation of  G corresponding to a. Those representations can be 
expressed in terms of  Schur functors. 

S , E =  S , , E |  

where a' denotes the partition ( a ~ - a , ,  . . . ,  a,_ ~ - a , , 0 )  and S d E  denotes the 
corresponding Schur functor. 

The best reference for the representation theory is [Hu] and for the Schur 
functors the reader could consult [MD] (Sect. A5; the Schur functors are called 
there the irreducible polynomial functors) and [D-C]. I f  the sequence 
(al, az, �9 . . ,  a,) has repetitions then we use exponential notation, for example if 
a = ( 3 , 3 ,  1 , 1 , 1 , - 1 )  then we write a = (32, 13 , -1 ) .  

Sometimes we will distinguish the positive and negative parts of  a. I f  
s = ( s ~ , s 2  . . . . .  st) and t = (tt ,  t 2 , . . . ,  t,) are two partitions then we denote by 
(s, 0 ~, \ t )  the weight (s~ . . . .  , s~, 0 ~, - t . . . . . .  - ta). Of  course here c + r + u = n. 

Examples .  The symmetric power S j E  becomes in our notation S~,.,o,-,)E. The 
exterior power A i E  becomes S ~  o, ~)E, the exterior power AJE * becomes 
Sio,, j ~_ ~),)E. 

We will always use the dominant  weight notation for the indexing of Schur 
functors. 

(2.4) B o t t ' s  T h e o r e m .  For calculation o f  higher direct images we will use the 
fo l lowing version o f  Bot t ' s  Theorem. 

Theorem. Let  E be an n-dimensional vector bundle on ascheme X. Le t  G/Pr(E ) be 
the relative grassmannian o f  r-subbundles o f  E, O ~ R r ~ E ~ Q , _ ~ O  the 
tautological sequence on G/P~(E). Le t  us denote by ~r the natural projection z~: 
G/Pr(E ) ~ X. Le t  a = (a a , a2, . . . ,  at) and b = (b I , b e . . . . .  b,_~) be two dominant 
integral weights. Le t  c = (bl , . . . ,  b,_~, a n . . . . .  ar) and o = ( n -  1, . . . ,  2, 1,0). We 
denote by W the permutat ion  group on n letters and f o r  w e  W w . c = w ( c + o) - ~. 
Then either there ex is ts  w ~ W, w + i d  such that w . c = c, and then 
~ * ~ t . ( S , R |  = O, or there exis ts  a unique w such that w" c is dominant. We 
denote the weight w .  c f o r  this w by (b[a).  In that case 

~ l ~ w ) n . ( S a R |  ) = S(aL,)E and i 7 r . ( S a R |  = 0 .for i : f  l (w) .  

Remark .  In [J-P-W] the theorem is formulated only for positive a i, bj but the 
generalisation follows directly f rom the definitions. 
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(2.5) Cauchy's Formulas. In our proof we will use two important formulas that 
give the decomposition of the symmetric and exterior powers of E | F in terms of 
Schur functors. 

Sm(E@F)= ~ SnE@SaF, 
lal=m 

A~(EQF) = ~, SaEQS.~F. 
laJ-m 

Section 3. Complexes M v ( . )  and the description of low terms in the resolution of 
(E* | E)[~ v 

Our approach to the problem of  finding generators of the ideals 3v is to use a 
desingularisation of Xv. We consider the variety Yv c X x G/Pv 

Yv={(A;R~,,R~+v~... Rvl+v2+..+OlARv,+..+, c R h + .  +~., f o r a l l i } .  

One can easily see that the image of Y~ under the projection on X equals X,, and 
that the projection induces a birational isomorphism between Y~ and X,. The 
space Yv can also be viewed as the total space of the cotangent bundle of G/P,. The 
structure sheaf of Y, is the symmetric algebra on the tangent bundle of G/P,. We 
denote this bundle by ,y,.~ The next step is to express J ,  in terms of tautological 
bundles on G/Pv. To do that let us recall that there is a well - known equivalence of  
categories 

[homogeneous vector bundles on G/P,] h [Pv-modules] 

where h (V) is the fibre at the identity. Under this equivalence the tangent space to 
GL(E) becomes E* |  E and the tangent space to P, becomes the parabolic Lie 
algebra pv. Now it is obvious looking at the roots belonging to p, that Yv has a 
composition series whose associated graded object equals 

* . . .  R *  ... , �9 (3.1) J',=Rv,| G ~,+...+~,,| ~/R~,+...+,, 1) 

We define the bundle 5~ by the exact sequence 

(3.2) 0 ~ Yv --, E* | E--* -Y-v ~ 0 

and observe that 5P has a composition series with associated graded object 

* | (3.3) 5'~'v=E*| GQ,~+...+v, (Rv,+vJR~)| 

.. .  | Q* | +... +v ' ,). 

One should mention that in the case of rank varieties i.e. when Iv[ = l <  n, the 
corresponding ~ '  and ~ '  have a different expression. (3.1) must be modified by 

~,. has the decomposition the additional summand E*@ (E/R~,+...v, ,) and ' ' 

(3.3') 6e'v = E* | RvI | Q**~ | (R~,+v~/R,~) |  
. . , ( ~  * O . . . .  _ . . . . . . .  | ,). 
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We have already said that the structure sheaf C r is equal to the symmetric 
algebra 50 (Yv), so its locally free resolution over 6:x • ~/p equals 

(3.4) A (5Tv) ~ (Jr ~ O .  

We want to apply Theorem (2.1). Instead of calculating higher direct images of  
A i ( j , )  we calculate higher direct images of  A i(SP',.). This gives us more terms but 
we know that they form a (non minimal) complex with the same cohomology as 
the complex we would get from higher direct images of  A i (Sp,). We define now the 
complexes M*( . )  = MY(E, E*, �9 ) 

(3.5) M ' ( j )  = @ ~ i ~ . ( A  i+iSf~), 
i 

(3.6) M*( . ) :  . . .  ~ M ~ ( j ) ~  M * ( / -  1 ) ~  . . . .  

The differentials in M*( . )  are defined in such a way that 
Hi(M* (.)) = ~ ix , ( (g r ) .  By Cauchy's  formula 

(3.7) A J S P ' = ~ S , ; E * |  Rv,| . . .  |  cQv*| ' ,) 

where we sum over all t-tuples of  partitions a~, a2 . . . . .  a t such that 

l a x [ +  . . .  + latl = j .  
We notice that all our  constructions can be made for relative flag manifolds i. e. 

for a vector bundle g over some base space Z instead of a vector space E (the case 
o v = E corresponds to Z being a point). Then the terms in (3.3) except the first one 
form the composit ion series of 5f~, in the relative situation of  g = Ql,,r where 
v ~ = (v2,v3, . . . ,  vt). This proves the following lemma. 

(3.8) Lemma. Let v = (v 1, v 2 . . . .  , v,) and v ~ = (v2, . . . ,  v,). Then the terms of 
M*(. ) are the higher direct images ~irc, of 

~ S ~ - E * Q S ,  R| ") 

where R:=R,,, Q:= Q . . . .  and ~r is the projection of X• G/P, onto X. 
Now we investigate the relation between the complexes M*(E, E*, . )  and 

M*"(Q,Q *, .). The terms in M*~(Q,Q *, .) are of  the form SbQ where b is a 
dominant  integral weight with possibly negative indices. We look at the part  of  
M*(E, E*, .) coming from SbQ | A (E*@ R). For  our purposes it is convenient 
to denote 

( 3 . 9 )  b = ( s , 0 C , \ t )  = (s  x . . . . .  s . ,  0", - t  . . . . . .  - t t )  

where s and t are two partitions, u + v + c = n. We assume that SbQ appears in 
degree i in M *~ (Q, Q*, �9 ). We will denote the part  of  MY(E, E*, �9 ) coming from 
SbQ| A (E*@ R) by K~,o~\t)(E, E*). By Bott 's  theorem it equals 

(3 .10)  K(s,O~,\t)(E , E*) = 2 ~ J T r , ( g , - E * |  SaR| Q) 

=~S,-E*| ~ (s, 0~,\t] a)] 

where the number  in the square bracket denotes the degree of  the corresponding 
element and :~ (s, 0 ~, ktl a) denotes the length of the permutat ion w used in Bott 's 
theorem (compare (2.4)). 
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N o w  we p rove  the key c o m b i n a t o r i a l  lemma. The  ma in  idea is to show tha t  the 
te rm of  M *~ (Q, Q*, i) can give te rms  o f  M ~ ( E, E*, j )  only in degrees j bigger than or 
equal to i. 

(3.11) Lemma.  Let O ~ R ~ E ~ Q ~ O  be the tautological sequence on the 
grassmannian Grass (r, n). Let us consider the bundle S~.o,\t)Q. We assume that 
r = d im R > t 1 . Then the terms of  K(s,  0 ~, \ t )  (E, E*) of  lowest degree are 

S(t , t~, , )E* | S(s, Oq\tEt? +c+ ~,t; . . . .  ) E 

S~t,, , ...... ,,,1~+,) E*| . . . . .  s~ E 

S,E* | S~s.o~.\,l,-) E 

StE*@S~E. 

Moreover, i f  S(s,o,,\t) Q o c c u r s  in M,"(Q,Q*, i )  then S t E * |  also occurs in 
M*(E, E*, i). For all a's leading to non zero terms in K(s,O~\t)(E, E*) the weight 
(s, 0c , \ t l  a) has nonnegative terms. Finally, i f  t ,  < r, then K(s,o~,\t)(E, E*) consists of 
terms S , E |  S,E* with zl < r. 

Proof. By Bot t ' s  Theo rem(2 .4 )  the pa r t i t ions  a leading  to non zero terms in 
K(s,o~,,~(E, E*) are  the ones for  which the sequence 

z (a) = (s, 0 c, \ t ,  a) + (n - 1, n -  2 . . . .  , 2, I) 

= ( s ~ + n - 1 ,  . . . ,  su+n-u ,  r + v + c - 1  . . . . .  r + v , r + v - l - t v ,  . . . ,  r - t ~ ,  
a l + r - 1 ,  . . . ,  at) 

has no repet i t ions .  The  term co r r e spond ing  to such a has a d o m i n a n t  weight  tha t  
comes f rom reo rde r ing  z(a)  into a strictly decreas ing sequence,  and  subs t rac t ing  

= ( n -  1 . . . . .  2, 1) f rom it. This te rm occurs in the place  p (a) = I a] - l(w) where 
l(w) is the n u m b e r  o f  exchanges  needed to reorder  z(a) .  

F i r s t  o f  all we not ice  tha t  if  r > t l  then all number s  in z (a)  are  posit ive.  This  
shows tha t  the weight  (s, 0 c , \ t l a )  has nonnega t ive  terms. 

Next ,  it is easy to see tha t  i f b  = (a I . . . . .  a s + j ,  as+ : . . . .  , a,)  then p (b )  > p (a ) .  
Indeed,  when reorder ing  z (b) the  n u m b e r  a~ + j  + r - s can be exchanged  with at  
m o s t j  - 1 add i t i ona l  places c o m p a r e d  to a~ + r - s in z (a). This will account  for an 
increase o f  at  mos t  j -  1 in l(w). 

On the o ther  hand  if  c + v -> a i then (r + v + c + 1 . . . . .  r + v, r + v - 1 - t . . . . . .  
r -  t l ,  a 1 + r -  1 . . . .  , at) are  r + v + e numbers  be longing  to {0, 1 . . . .  , r + v + c - 1 }. 
They can be dis t inct  for a unique  pa r t i t i on  a and  it is easy to see that  a = t ~ . I t  is 
also clear  tha t  this a is the smal les t  pa r t i t ion  lead ing  to a non  zero te rm in 
K(s,0~ \t)(E , E * )  a n d  by the prev ious  reasoning  i t sp  (a) is the smallest ,  so it furnishes 
the lowest  te rm o f  K(s, oo,\o(E, E*). Fina l ly  it is easy to check tha t  p ( t  ~) = 0. 
Similar ly  one ident if ies  a un ique  pa r t i t ion  a'  with p (a ')  = 1. 

To p rove  the last s ta tement  o f  (3.11) we recall  tha t  the typical  term in 
K(s,0~ \o(E,  E*) is S(s.O,,\tla)E @ S  a- E*. Since a = (al  . . . .  , at),  a7  < r. This  con-  
cludes the p r o o f  o f  (3.11). 

N o w  we can s tate  the main  result  o f  this section. 
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(3.12) Theorem. The O-th and 1-st term of M'(E, E*, .) consists of higher direct 
images of M ~" (Q, Q*, O) | A (E* | R) and of M ~ (Q, Q*, I) | A (E* | R). 

Proof The statement (3.1 l) shows that the 0-th and 1-st term ofM*(E,  E*, �9 ) can 
come only from the 0-th and l-st term of  M ~ (Q, Q*, �9 ) if we can assume that all 
terms of  MrS(Q, Q*, .) satisfy the condition of (3.11). To show it we prove by 
induction on the number of parts in v that all terms S~s o, \tl E in  MY( E, E*,. ) satisfy 
tl < v~. Indeed, let us assume that this is true for M ~" iQ, Q*, �9 ) (i. e. all terms there 
are of  the form S(s,0~ \t)Q with tl <v2). But in (3.11) r=v ~  >v2 so all terms in 
M'"  (Q, Q*, �9 ) satisfy the condition of the last statement of (3.11). Thus it remains 
to show that in SwE| with z~<v~ we can only get the represen- 
tations S(~.0~,\t)E with tl < v~. But this follows immediately from the Littlewood- 
Richardson rule ([MD], Sect. 1.9 and A.7). 

(3.14) Remark. The proof  of  Theorem (3.12) shows that for any m the 0-th, l-st, 
. . . .  m-th terms of M*(E,E *, .) come only from 0-th, 1-st, . . . ,  m-th terms of  
M~(Q,Q *, .). 

(3.15) Corollary. The varieties Xv are normal and have rational singularities. 

Proof. The Theorem (3.12) shows that M*(E,E *, .) has no terms in negative 
degrees and that M*(E,E*,O)=Cx . The corollary now follows from 
Theorem (2.1). 

To find the equations of  the rank varieties X, we need to analyse the term 
M*(E,E*,I). The Theorem (3.12) and Lemma (3.11) tell us that for 
v = (v 1 . . . . .  v 0, MY(E, E*, 1) is constructed inductively from M ~" (Q, Q*, �9 ) where 
v ~ = (v/ . . . .  , v~). M*(E, E*, 1) consists of  two parts: 

1) M*"(Q, Q*, 1), decomposes into bundles Sl~,o~,,tlQ and each such term gives 
us a term S~E| St E* in M~(E, E*, 1), 

2) M v~ (Q, Q*, 0) gives us A ~+'-  + ~,+ ~ E |  A v~+'" +~,+ ~ E* (corresponding to 
the vanishing of  the minors of  order v2 + . . .  + v~+ 1) in Mv(E, E*, 1). 

It is easy to see using this procedure that the only representations of  E that can 
appear in Mv(E,E*,I) are Sr162 for various i and in various 
homogeneous degrees. We identify them as linear combinations of  minors of 
various sizes in the next section. 

Section 4. Tanisaki generators of ~v. Proof of the main theorem 

In this section we investigate the linear combinations of  minors in 5: ( E |  E*) 
vanishing on Xv. This analysis is then used to prove that elements of this type 
generate the ideals 3v. 

Let us recall that by the Cauchy formula we have 

Sm(E| ~ SaE*| 
lal  = m  

We look at t h e p  x p  minors of  the matrix A. They correspond to APE* |  APE. 
Using the Littlewood-Richardson rule we find 

APE*@ A P E ~  @ S~,,o.-~,.~-i~)E. 
O<_i<_min{p,n-p) 
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We will denote the copy of  S~1, o . . . .  ,~ 1~,) E inside of  APE* @/~ VE by Ui. p, so we 
get 

APE*@ A P E =  ~ U~.p. 
O <<_i <_min(p,n- p} 

Next, we denote by V~,p the subspace of APE*@ APE generated by 
Uo, p • U1, p 0 . . .  | Ui, p. The point of  introducing Vi. m is that the embedding of  
V~, m into A mE*| A mE can be simply expressed in terms of  minors. Indeed V~, p is 
isomorphic to A ~E*| A ~E and the embedding is given by multiplying by the 
invariant tm_ ~ (compare(2.0)).  This means that if e L . . . ,  e, is a basis in E, the 
element e~l/x e,2/x . . .  /x %|  e* 2/~ . . . /x  e~. in V/, m becomes the sum of  
minors 

(al . . . . .  ai, Jib1 . . . . .  bi, J ) .  
IJl=p-i 

First we determine which V~,m vanish on X,. 

(4.1) Lemma. Let v be a partition, u its conjugate. Then the elements of  the space 
Vi, m vanish on the variety X, iff 

(4.2) p > n - l u l + u l  + . . .  + u ~ - i .  

Proof. Let the condition (4.2) be satisfied. We will show that V~, p vanishes on Xv. 
Indeed, the typical element of  V~, p is 

( A , J [ B , J )  
IJl=v-i 

for fixed subsets A, B, both of cardinality i. However  all minors (A, J]B, J) vanish 
on Xv because it is enough to check that they vanish on the elements of  X~ in 
canonical Jordan form. 

Now we prove that if condition (4.2) is not satisfied, then Vi, m does not vanish 
on X,. Let us assume that p = n - [u[ + u I -~- . . .  AV U i - -  i. Let us denote n - I u[ by 
y. We choose a canonical Jordan form of a matrix from X~ such that the boxes 
corresponding to eigenvalue 0 are in the lower right corner. We also choose j so 
uj > l, uj+ ~ = 1 (if u i > 1 then j = i). Now we choose 

A = [ y +  1, y + u  I + 1 . . . . .  y + u  1 + . . .  + U j +  1] .  

We can also choose w ~ , . . . , w j  in such a way that l<wm__<u~, 
W 1 -[- . . .  -]- Wj = p  -[- i. L e t  

B =  [ y +  W1, y W u  I AvW2 . . . .  , y + u  1 + . . .  + U j _  1 + Wj] .  

We consider the element (*) ~ ( A, J[ B, J). 
[ J [ = p - j  

Clearly its value on the general matrix from X~ is not zero, because such a matrix is 
generic in the upper  left y •  corner. Our element belongs to Vj, m which is 
contained in V~,m. This proves the lemma. 

(4.3) Remark. Lemma 4.1 is due to Eisenbud and Saltman [E-S]. In case of  
nilpotent orbits it was proved by Tanisaki [T]. Their notation was different f rom 
ours. Let us mention that 2~ in [E-S] is our V,_ t, ~. In casej  = i in the proof  of  (4.1) 
we see that the element (*) we consider belongs to U~,p. Thus in case j  = i we have 
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that U~, v vanishes on X, if and only if the condition (4.2) is satisfied. This is true in 
general, but the proof  is much more complicated. We do not include it here 
because the proof  of the main result is independent of this statement. 

The representations V~, p do not give independent generators of 3 , .  

(4.4) Lemma. For i >  1 Vi,;+l is contained in the ideal generated by Vi, p. 

Proof. The lemma follows directly from the Laplace expansion. 
Let us denote by Jv  the ideal generated by representations V~,p satisfying 

condition (4.2). Our goal is to show that in fact 3,  = J , .  Lemmas (4.1) and (4.4) 
show that J ,  is generated by the invariants U o , n _ l v l + l ,  . . . ,  Uo, n and by the 
representations U,,,(0(1 < i<  n) where v (i) = u~ + . . .  + u~-  i + 1 (let us notice that 
if v(i) > min(v(i), n - v ( / ) )  then Ui, w) is zero). 

There is a useful way to describe graphically the representations U~, p. We do it 
for a concrete example from which the general case is obvious. 

(4.5) Example. Let n = 12, u=(3 ,3 ,2 ,2 ,1 ,1 ) .  We draw the following diagram. 
For  each pair (i,p) corresponding to U~,p we draw an X in the place ( i ,p)  if U~,p 
vanishes on O (u) and 0 if U/, p does not vanish on O (u). In fact, according to (4.2), 
the highest X in the zeroth column occurs in the first row, the highest X in the i-th 
column (for i > 0) occurs in the v (i)-th row, where v (i) = Ul + . . .  + ui - i + 1. F o r  
u = (3, 3, 2, 2, 1,1) we have v (1) = 3, v (2) = 5, v (3) = 6, v (4) = v (5) = v (6) = 7, so 
we get a diagram 

p =  0 0 

p =  1 X 0 

p =  2 X 0 0  

p =  3 X X O 0 

p =  4 X X O 0 0  

p =  5 X X X O 0 0 

p =  6 X X X X O 0 0  

p =  7 X X X X X X  

p =  8 X X X X X  

p = 9  X X X X 

p = l O  X X X 

p = 1 1  X X 

p = 1 2  X 

i.'= 0 1  2 3 4 5 6  

J ,  is generated by the first column and the highest X in other columns, i.e. by 
Uo .p ( l <p<12) ,  Ul.a, UE,5, U3,6, U4,7, U5,7- 

Now comes the main result of this paper. 

(4.6) Theorem. For each partition v o f l ,  l < n, the ideal 3 ,  of  rank variety is equal 
to J ,  i.e. is generated by Ui.,(i)(1 < i < n), where as above v (i) = Ul + . . .  + ui - i + 1, 
and by the invariants Uo, p (n - [ v [ + 1 < p < n). 

(4.7) Remark.  This set of  generators is not minimal. We will discuss minimal 
sets of  generators of  3 ,  in the next section. 
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Proof of Theorem (4.6). We argue by induction on the number t of  parts in v. For  
t = 1, v = (/) Jr, is the set of  matrices of rank < n - l. The ideal 3,  is generated by 
the n - l +  1 minors. On the other hand the condition (4.2) reads p > n - l ut 
because u =  (l l) and if i >  1 then we are in the range U~,p= 0. Thus both con- 
ditions agree. Let us mention that in this case the complex 
MY(E, E*, �9 ) = ~ * ~ .  A ( R |  is the Lascoux resolution. Let v ~ = (v z . . . . .  vt). 
We know by induction that 3 :  has the generators as indicated in the theorem. 
This means that we can assume (by cutting down M :  (Q, Q* , . ) )  that 

M'"(Q,Q*,I) = ~, Ui,:u)(Q,Q*) + ~, Uo,p(Q,Q*) 
l<i<rv~l n ' - I v ~ l +  l < p < n  ' 

where n '=  n - v i .  Now we apply Theorem (3.12). It follows that M'(E, E*, 1) 
after cancelling some terms consists of  the trivial representations in degrees 
n ' - I v ~ [ +  1 . . . . .  n' (corresponding to invariants), the terms 

ALE*| A iE = ~ig. (SiR | /~ iE*| S(1,,o,,_~,(_I)~)Q) in degree v~(i) + i, and 
the term A ", +... +v,+~E* | A ', +... +',+tE corresponding to the rank condition on 
vanishing of minors of size v2 + . . .  + v~+ 1 (coming from M:(Q,  Q*,0)). It is 
enough to identify the second set of  generators because identification ofinvariants 
is obvious. 

First let us make some general comments about the connecting homomor- 
phisms in the spectral sequence of  the filtration on : ,  we analyze. The complex 
M:(Q,Q*, .) is a complex of  5:(Q| modules. It induces naturally a 
complex with the same terms over 5:(Q| Thus the connecting homo- 
morphisms lowering homological degree all come from the extensions induced 
from O~ R ~ E--+Q--+O. 

The map in M*" (Q, Q*, . ) corresponding to U,.,v,u) factors through the 
embedding 

Sl~,,o~ Q --,/x :<~)Q* | 
Thus by the above remarks we see that the corresponding map in M'(E, E*, .) 
factors as follows 

(4.8) 

AiE*@ AiE =,~i~.(  A iE*|174 ',,(-1)')Q) 

1 
~t ire. ( A i E* | Si R | A :U)Q * | A "~(i)Q) 

[: 
~ ~ 1 7 4  AiQ| A:U)Q* |  A:(:)Q) 

1. 
, ~og . (  A iE* | A iQ | A : ( i )E .  | A:U)Q) 

ALE*| A iE| A v~(i)E*@ A v~(i)E 

1. 
~(E* |  
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Here the m a p f i s  induced by the action of the natural generator A i (E~Q) of 

Exti(AiQ, SiR) = Hi(SiR| A iQ,) = S(o,o ..... o)E=k.  

g is induced by the embedding Q * ~ E *  and h by the identification 
o zc, (A iQ) = A iE. Let us also observe that h, u are GL (E*) x GL(E) invariant 

since they preserve homogenous degree in E and E*. The map f has to go to 
ozc, ( A iE* | A ~Q | A'~(0 Q* | A ~(0Q) because for other partitions a of i, 

Exti(S,Q, SiR) = Hi(S,R| SaQ* ) = 0. 
Let us consider the composition of  the first four maps in (4.8). Since it goes 

from homogeneous degree i in E and E* to homogeneous degree i + v ~ (i), the 
extra v~(i) components have to come from a trace map t,: k ~ S , E |  for 
some partition a of v ~ (i). 

Now we have the commutative diagram 

H I ( S i R |  v , H ~ 1 7 4  

J H~ 

k i ,~ HO(S~o,o ..... o)Q) 

where v is induced by the extension A i (E~ Q). This shows that the components 
corresponding to AiE in the term AiE*@ AiE|  Av~(/)E*| A~(0E of (4.8) 
come entirely from trace. On the other hand all the maps involved are equal to the 
identity on the components corresponding to A iE*, so the components from 
A v"(0E* come entirely from trace. This shows that t, above is in fact the exterior 
power t,~ (i): k --* A "" (i)E @ A v~ (i)E," We can conclude that the whole composition 
4.8 is of the following form 

A i E , @ A i E  l| , A i E , @ A i E @ A v ~ ( i ) E , @ A v ~ ( O E _  w , 

A iE* @ A iE@ A v"(')E* | A v~(i)E--~ ~9 ~ (E* @ E) 

where w is the identity on the components involving E* and on the components 
involving E it equals 

w': A i E |  A~(i)E 1| > AlE@ Av,(i)_iE@ AlE  m12@l ) Av#(i)E@ AlE.  

Here A and m denote the diagonal and multiplication map (compare (2.0)). It is 
well known that w' is a GL(E) invariant isomorphism. It follows that the 
composition (4.8) is contained in the image of the map 

A i E * |  '| , AiE*|174 _W" ,5O(E*| 

for some GL(E*) x GL(E) invariant map w". It follows from [D-E-P] that the map 
w" is a linear combination of  the maps wi(O<j< i) 

Wj: Av~(i)E*| Av~(i)E~) A iE*(~ A iE -'* 

-., Av~(i)+JE*@ Av~(i)+JE| Ai-J'E*| Ai -JE  %' , 5P(E*@E).  
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Here the first map is a combination of diagonal and multiplication on both 
sides (like w' above) and wj' is an embedding via products of minors of sizes 
v ~ (i) 4-j and i - j .  To finish the proof  of the theorem it is enough to prove that for 

�9 ~ �9 t t  y t v..'= w. (1 | tv~ g) all belong to J ,  Indeed, v i ts one of the generators of or J J () 
because u; = u~ + 1, so v(i) = v ~ (i) + i. Now let us look at vi-;(j> 0). The image 
of a typical element is a combination of products of  minors of  size v ~ (i) + i - j  and 
j. But the minors of  size v ~+ (i) 4- i - j  include the trace element t~(0. Each such 
combination is in ,,r because 

i + v ~ ( i ) = n 1 4 - . . . 4 - u ~ - i  and Ui= U~i4- 1 SO 

i + v  ~ ( i ) - j>=u  1 + . . .  +ui_ ~ - i + j  

and condition (4.2) is satisfied. This finally proves that our generator is a 
combination of elements of  .3 v . 

(4.9) Remark. It seems that in fact the generator Ui, v%)(Q,Q* ) gives the 
representation Vi, v~ (,? + i( E, E*) but we proved a weaker statement above. It would 
be very interesting to identify this generator more precisely. 

(4.10) Example. The combinatorics above is quite complicated so let us give a 
concrete example of  the inductive step. We will show how one gets generators of  
"~(6,4,2) from the generators of  ~(4,2~. Let us draw the diagram (4.5) for the 
partition (4, 2) 

p = 0  0 

p = l  x 0 

p = 2  x x o 
p = 3  x x x x 
p = 4  x x x 
p = 5  x x 

p = 6  x 

i.'= 0 1 2 3 

This means that 3~4 ' 2) is generated by the invariants, by U1,2, U2, 3 and by 
U3, 3. After passing to ~(6, 4, z), terms corresponding to U1,2, U2, 3 and U3, 3 give 
generators V1,3, V2, 5 and V3,6 respectively. This covers the generators U1,3, U2, 5, 
U3, 6 of  ~(6,4,2). The generators U4,7 and U5,7 come from the term 
K(o,o,o,o,o,o)(Q,Q*). 

Section 5. Minimal sets o f  generators of  the ideals 13~ 

In this section we describe plausible minimal sets of generators of the ideals 
.3,. Theorem (4.6) states that .3, is generated by the representations 
Uo, p(n-[v[+ 1 < p < n )  and Ui,,(i~(1 < i < n )  where v ( i ) = n - l v [  + ul + . . .  +u~ 
- i 4- 1. We give the main statement right away. 
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(5.1) Conjecture. The ideal .~v is minimally generated by the representations 
Uo, p ( n -  I vl + 1 _< p __< n - [vl + u l) and Ui, v~i) for which the following condition is 
satisfied 

(5.2) v(i) - 1 > i/j(v(j)-- 1) for all 1 < j <  i. 

(5.3) Remark. The most suggestive interpretation of the condition (5.2) comes 
when using the diagram 4.5. Let us look at the position (i,p) = (0, 1). The symbol X 
corresponding to Ui, v~o in the diagram is part  of  a minimal set of generators 
of  3 ,  when there are no X'es to the right of  (or on) the segment joining (i, v (i)) 
with (0,1). 

(5.4) Example. Uz, 5 is not among the minimal generators of  3~6, 4, 2) because the 
point (1.3) belongs to the segment (0,1)-(2, 5) (compare the diagram from (4.5). 

In fact ~(6,4,2) is minimally generated by Uo, 1, Uo,2, Uo,3, U1,3, U3,6, U4,7, 
U5,7  �9 

We close this section with some examples of  ideals ,~v for special partitions. In 
all of  these examples we assume I v I = n i.e. we look at the nilpotent orbit. 

(5.5) Example. v = (m, l"-m). In this case X, is a so called rank variety. It 
consists of  nilpotent matrices of  rank _< n - m. Using the induction process from 
Sect. 3 it is possible to calculate the whole complex M ' ( .  ). Indeed, for v ~ = (1" -" ) ,  
M ~" (Q, Q*, �9 ) is the Koszul complex on the invariants in degrees 1, 2 . . . .  , n - m .  
Thus MY(-) becomes K(o,o ..... o)(E,E*) tensored with this Koszul complex 
K(o,o ..... o)(E,E*) equals by definition N * n , ( A ( R |  which is just the 
Lascoux complex for minors of  order n - m + 1. This shows that in this case M v ( . )  
is the minimal resolution of 5e ( E * |  E)/-~v and X,, is a complete intersection cut 
out by Uo, 1, �9 �9 U0,,-m in the determinantal variety of matrices of  rank < n - m. 
This result was obtained independently and by other methods in [E-S]. 

(5.6) Example. v=(v l ,vz ) .  The construction from Sect. 3 shows that 3v is 
generated by Uo, 1, Uo,2, UI,z and the rank cond i t ion -  vanishing of  the minors of  
size v2 + 1. However it is easy to see using Laplace expansions that the ideal 
generated by V1,2 = Uo.2+ U1,2 contains Vv .... +1. Thus the minimal set of  
generators consists in this case of  Uo, 1, U0, 2, UI, 2 and U,2 + ~, v~ + 1. In the case when 
Vl = v2 this last representation is zero. This example recovers the characteristic 0 
case of the result of Strickland [S]. 

(5.7) Example. v is a rectangular partition, i.e. v = (r~). Using Example 5.6 (case 
Vl ~--- u and the induction from Sect. 3 we easily find out that 3,  is generated by 
Uo, l, . - . ,  Uo,~ and U~,~. Those generators are clearly minimal. 

We see that for the partitions from Examples (5.5)-(5.7) the Conjecture (5.1) is 
satisfied. 

Section 6. Application to generalized exponents 

The method of Sect. 3 applies to the problem of  calculating the generalized 
exponents. Let us recall first the basic definitions. 
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We assume throughout  this section that d i m E = n ,  Iv] = n. We consider 
Ay = 5 r (E* |  - the coordinate ring of Xy. It was proven by Kostant  in [K] 
that for each dominant integral weight a = (a 1 . . . . .  a,) the representation S,E 
appears in Av finitely many times. Av is a graded ring, so we can define polynomials 
P~,v(t)=Ema.v, it i where m~,v,i is the multiplicity of S~E in the i-th graded 
component of Av. Kostant  in [K] gave formulas for calculation of the coefficients 
m~,,.i in terms of SL(2) - triples associated to v but they are not very explicit. Thus 
the problem is to find nice expressions for the polynomials P~.v(t). 

There has been a substantial ammount of  work done in this direction. One 
should mention here the work of  R. Stanley and R. Gupta [G],[St] and the 
unpublished note of  D. Peterson [P]. 

Our approach allows us to develop inductive formulas for P,,dt) in terms of  
Bott's algorithm and the Littlewood-Richardson rule. 

We will use the following notation. P (v, t) is the element of the polynomial ring 
in one variable t over the representation ring of GL(n) defined as 

(6.1) P(v, t) = Z [Av, i] t i 

where [Av, i] denotes the class of  the i-th graded component of  Av. We have by 
definition 

(6.2) P(v, t) = Z P~,v(t)[SoE], 

Now it follows from (3.15) that 

(6.3) Av=Z~,(5~(.Y-v)), N ' g , ( ~ ( , Y - , ) ) = 0  for i > 0 .  

Our method consists of calculating inductively i ~ o7-, Z ( - 1 )  ,~ ~ . ( Y  (~',)) using the 
grassmannian. Let us take v = ( v l , . . . ,  vO v ̂  = (v~, . . . .  v~_ 1). Let n' = I v" I. We 
consider the grassmannian Grass (n',E). We denote by R the tautological 
subbundle, by Q the corresponding factorbundle. Suppose we know the 
polynomials P~,r for all weights a = (al . . . . .  a,,). We consider now the exact 
sequence 

(6.4) 0 ~ C-v.(R ) ~ Yv ~ R * | Q ~ 0 

where o~.(R) denotes the bundle J~. defined in Sect. 3 calculated in the relative 
situation where E becomes R. We get the following formula for P (v, t), 

P ( v , t )  ' ' = l )   ,(sjo 
i,j>O 

= ~ (-1) i~irc , (Sj ,  J - d R ) | 1 7 4  tj 
i , j ' , j">O 

1) Po,,(t) S.R| Sr(R*QQ)tr 
i>=o j">-_o 

:} - 'p , ,~ ( t )  t l b t ( ~ 0 ( - -  i ' ) 1) R ~,(S~RQSbR*|  . 
a,b i 

Now we can state the main result of this section. To do that let us denote 
r -= I v ^ l ,  q = n - r. For  a dominant integral weight d = (dr, . . . ,  d,) let W(i, r, d) be 
the subset of  the Weyl group W of GL(n) consisting of such elements w that 
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l(w)=i, and for which w . d = ( b l  . . . . .  b,) has the property b l > . . . > b q ,  
b q + l > . . .  > b , .  

(6.5) Theorem. Let d = (d a . . . . .  d,) be a dominant integral weight. Then 

(6.6) Pd, v(t)= ~ (--1) / ~" (LR)._b;~Po, v^(t)t Ibl 
i> 0 a,(bt, . . . , bq , c l  . . . . .  c~)eW(i,r,d) 

where (LR).,-b;~ k~ the multiplicity of S~R in S .R|  SbR*. 

Proof. The theorem follows from the last formula above after decomposing the 
tensor product in the bracket and applying BoWs theorem. One should note that 
the coefficient (LR) can be calculated from the Littlewood-Richardson rule. 

(6.7) Remark. We can get a similar formula for Pa,,(t) in terms ofP,,,~ (t) where 
v ~ = (v2 , . . . , v t )  by using the other induction v ~ v  ~ and the corresponding 
grassmannian. 

(6.8) Remark. The method of Peterson [P] of  generalized exponents (i. e. the case 
v = (1")) consists in fact in calculating the higher direct images not for J-v but for 
the associated graded bundle Y~' which is a sum of one dimensional bundles (they 
correspond to positive roots). Our method in this case seems to be more 
economical. 

(6.9) Remark. When this paper was in preparation I got from R. Stanley the 
preprint [M] where the authors prove similar result to Theorem(6.5) 
(Theorem (2.2)). 

There is a very interesting special case of Theorem (6.5). We can consider the 
schematic intersections of  the varieties Xv with the set T of diagonal matrices. 
Geometrically each of them is a point. Let us denote by By the graded Artin 
algebra we get in this way (By = Av/J where J is the ideal generated by A i , j ,  i+-j). 
There is a natural action of  the Weyl group W on the algebras B,. We can define 
the Poincare polynomials K',,(t) 

K~,,(t) =Xm .... i ti 

where m .... ,. is the multiplicity of the irreducible representation Sw of W in the i-th 
graded component of By. The polynomials K,~,v(t) are called the Kostka-Foulkes 
polynomials (compare [MD]). It turns out that  those polynomials are a special 
case of the polynomials Pa,~(t). 

Let a = (at, . . . ,  a,) be a dominant integral weight with al + . . .  + a,  = 0 and 
al = 1. To a we associate a partition a ofn  by letting ai = - a , + l - i +  1. Now we 
can state the result. 

(6.10) Theorem. Pa, v(t) = K~,v(t). 

Proof. The inductive formula one gets when using the filtration of Yv by one 
dimensional bundles is the same as the definition of K~,v (t) given in MacDonald's 
book [MD] (Sect. III.6). 

This proof  was communicated to me by J. Klimek. 
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Note added in proof 
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