SEMI-INVARIANTS OF QUIVERS AND SATURATION FOR LITTLEWOOD-RICHARDSON COEFFICIENTS

HARM DERKSEN AND JERZY WEYMAN

1. Introduction

Let Q be a quiver without oriented cycles. Let α be a dimension vector for Q. We denote by $\operatorname{SI}(Q, \alpha)$ the ring of semi-invariants of the set of α-dimensional representations of Q over a fixed algebraically closed field K.

In this paper we prove some results about the set

$$
\Sigma(Q, \alpha)=\left\{\sigma \mid \operatorname{SI}(Q, \alpha)_{\sigma} \neq 0\right\} .
$$

$\Sigma(Q, \alpha)$ is defined in the space of all weights by one homogeneous linear equation and by a finite set of homogeneous linear inequalities. In particular the set $\Sigma(Q, \alpha)$ is saturated, i.e., if $n \sigma \in \Sigma(Q, \alpha)$, then also $\sigma \in \Sigma(Q, \alpha)$.

These results, when applied to a special quiver $Q=T_{n, n, n}$ and to a special dimension vector, show that the GL_{n}-module V_{λ} appears in $V_{\mu} \otimes V_{\nu}$ if and only if the partitions λ, μ and ν satisfy an explicit set of inequalities. This gives new proofs of the results of Klyachko ([7, 3]) and Knutson and Tao (8]).

The proof is based on another general result about semi-invariants of quivers (Theorem 11). In the paper [10], Schofield defined a semi-invariant c_{W} for each indecomposable representation W of Q. We show that the semi-invariants of this type span each weight space in $\operatorname{SI}(Q, \alpha)$. This seems to be a fundamental fact, connecting semi-invariants and modules in a direct way. Given this fact, the results on sets of weights follow at once from the results in another paper of Schofield [11].

2. The Results

A quiver Q is a pair $Q=\left(Q_{0}, Q_{1}\right)$ consisting of the set of vertices Q_{0} and the set of arrows Q_{1}. Each arrow a has its head $h a$ and tail $t a$, both in Q_{0} :

$$
t a \xrightarrow{a} h a .
$$

We fix an algebraically closed field K. A representation (or a module) V of Q is a family of finite dimensional vector spaces $\left\{V(x) \mid x \in Q_{0}\right\}$ and of linear maps

[^0]$V(a): V(t a) \rightarrow V(h a)$. The dimension vector of a representation V is the function $\underline{d}(V): Q_{0} \rightarrow \mathbb{Z}_{\geq 0}$ defined by $\underline{d}(V)(x):=\operatorname{dim} V(x)$. The dimension vectors lie in the space Γ of integer-valued functions on Q_{0}. A morphism $\phi: V \rightarrow V^{\prime}$ of two representations is a collection of linear maps $\phi(x): V(x) \rightarrow V^{\prime}(x), x \in Q_{0}$, such that for each $a \in Q_{1}$ we have $\phi(h a) V(a)=V^{\prime}(a) \phi(t a)$. We denote the linear space of morphisms from V to V^{\prime} by $\operatorname{Hom}_{Q}\left(V, V^{\prime}\right)$.

A path p in Q is a sequence of arrows $p=a_{1}, \ldots, a_{n}$ such that $h a_{i}=t a_{i+1}$ $(1 \leq i \leq n-1)$. We define $t p=t a_{1}, h p=h a_{n}$. We also have the trivial path $e(x)$ from x to x. If V is a representation and $p=a_{1}, \ldots, a_{n}$, then we define $V(p):=V\left(a_{n}\right) V\left(a_{n-1}\right) \cdots V\left(a_{1}\right)$. We assume throughout the paper that Q has no oriented cycles, i.e., there are no paths $p=a_{1}, \ldots, a_{n}$ such that $t a_{1}=h a_{n}$.

For representations V and W of Q there is a canonical exact sequence (9)

$$
\begin{align*}
& 0 \rightarrow \operatorname{Hom}_{Q}(V, W) \xrightarrow{i} \bigoplus_{x \in Q_{0}} \operatorname{Hom}(V(x), W(x)) \tag{1}\\
& \xrightarrow{d_{W}^{V}} \bigoplus_{a \in Q_{1}} \operatorname{Hom}(V(t a), W(h a)) \xrightarrow{p} \operatorname{Ext}_{Q}(V, W) \rightarrow 0 .
\end{align*}
$$

The map i is the obvious inclusion, the map d_{W}^{V} is given by

$$
\{f(x)\}_{x \in Q_{0}} \mapsto\{f(h a) V(a)-W(a) f(t a)\}_{a \in Q_{1}},
$$

and the map p constructs an extension of the representations V and W by adding the maps $V(t a) \rightarrow W(h a)$ to the direct sum representation $V \oplus W$.

For $\alpha, \beta \in \Gamma$ we define the Euler inner product

$$
\langle\alpha, \beta\rangle=\sum_{x \in Q_{0}} \alpha(x) \beta(x)-\sum_{a \in Q_{1}} \alpha(t a) \beta(h a) .
$$

It follows from (II) that $\langle\underline{d}(V), \underline{d}(W)\rangle=\operatorname{dim}_{K} \operatorname{Hom}_{Q}(V, W)-\operatorname{dim}_{K} \operatorname{Ext}_{Q}(V, W)$.
For a dimension vector α we denote by

$$
\operatorname{Rep}(Q, \alpha):=\bigoplus_{a \in Q_{1}} \operatorname{Hom}\left(K^{\alpha(t a)}, K^{\alpha(h a)}\right)
$$

the vector space of α-dimensional representations of Q. The group

$$
\mathrm{GL}(Q, \alpha):=\prod_{x \in Q_{0}} \mathrm{GL}(\alpha(x))
$$

and its subgroup

$$
\operatorname{SL}(Q, \alpha)=\prod_{x \in Q_{0}} \operatorname{SL}(\alpha(x))
$$

act on $\operatorname{Rep}(Q, \alpha)$ in an obvious way. We are interested in the ring of semi-invariants

$$
\operatorname{SI}(Q, \alpha):=K[\operatorname{Rep}(Q, \alpha)]^{\operatorname{SL}(Q, \alpha)} .
$$

The ring $\operatorname{SI}(Q, \alpha)$ has a weight space decomposition

$$
\mathrm{SI}(Q, \alpha)=\bigoplus_{\sigma} \mathrm{SI}(Q, \alpha)_{\sigma}
$$

where σ runs through the (one-dimensional irreducible) characters of $\operatorname{GL}(Q, \alpha)$ and

$$
\operatorname{SI}(Q, \alpha)_{\sigma}=\{f \in K[\operatorname{Rep}(Q, \alpha)] \mid g(f)=\sigma(g) f \forall g \in \operatorname{GL}(Q, \alpha)\}
$$

Suppose that σ lies in the dual space $\Gamma^{\star}:=\operatorname{Hom}(\Gamma, \mathbb{Z})$. For each dimension vector α we can associate to σ a character of $\operatorname{GL}(Q, \alpha)$ defined as

$$
\prod_{x \in Q_{0}} d_{x}^{\sigma\left(e_{x}\right)}
$$

where d_{x} is the determinant function on $\mathrm{GL}(\alpha(x))$ and e_{x} is the dimension vector defined by

$$
e_{x}(y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

In this way we will identify characters with Γ^{\star}. Sometimes, for convenience, we will write $\sigma(x)$ instead of $\sigma\left(e_{x}\right)$ (and treat σ as an element of Γ).

Let us choose the dimension vectors α and β in such way that $\langle\alpha, \beta\rangle=0$. Then for every $V \in \operatorname{Rep}(Q, \alpha)$ and $W \in \operatorname{Rep}(Q, \beta)$ the matrix of d_{W}^{V} will be a square matrix. Following [10] we can therefore define the semi-invariant c of the action of $\operatorname{GL}(Q, \alpha) \times \operatorname{GL}(Q, \beta)$ on $\operatorname{Rep}(Q, \alpha) \times \operatorname{Rep}(Q, \beta)$ by $c(V, W):=\operatorname{det} d_{W}^{V}$. The value of the determinant depends on the choices of bases, so c is well-defined up to a scalar. Notice that the semi-invariant c vanishes at the point (V, W) if and only if $\operatorname{Hom}_{Q}(V, W) \neq 0$ which is equivalent to $\operatorname{Ext}_{Q}(V, W) \neq 0$. For a fixed V the restriction of c to $\{V\} \times \operatorname{Rep}(Q, \beta)$ defines a semi-invariant c^{V} in $\operatorname{SI}(Q, \beta)$. Schofield proves ([10, Lemma 1.4]) that the weight of c^{V} equals $\langle\alpha, \cdot\rangle \in \Gamma^{\star}$ which is defined as $\gamma \mapsto\langle\alpha, \gamma\rangle$. Similarly, for a fixed W the restriction of c to $\operatorname{Rep}(Q, \alpha) \times\{W\}$ defines a semi-invariant c_{W} in $\operatorname{SI}(Q, \alpha)$ of weight $-\langle\cdot, \beta\rangle$ ([10, Lemma 1.4]). If $V, V^{\prime} \in \operatorname{Rep}(Q, \alpha)$ and $V \cong V^{\prime}$, then V and V^{\prime} are in the same $\operatorname{GL}(Q, \alpha)$-orbit, and c^{V} and $c^{V^{\prime}}$ are equal up to a constant scalar. Semi-invariants of the types c^{V} and c_{W} are well-defined up to a scalar. These semi-invariants have the following properties.

Lemma 1. Suppose that $V, V^{\prime}, V^{\prime \prime}$ and $W, W^{\prime}, W^{\prime \prime}$ are representations of Q such that $\langle\underline{d}(V), \underline{d}(W)\rangle=0$, and that there are exact sequences

$$
0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0, \quad 0 \rightarrow W^{\prime} \rightarrow W \rightarrow W^{\prime \prime} \rightarrow 0
$$

a) If $\left\langle\underline{d}\left(V^{\prime}\right), \underline{d}(W)\right\rangle<0$, then $c^{V}(W)=0$;
b) If $\left\langle\underline{d}\left(V^{\prime}\right), \underline{d}(W)\right\rangle=0$, then $c^{V}(W)=c^{V^{\prime}}(W) c^{V^{\prime \prime}}(W)$;
c) If $\left\langle\underline{d}(V), \underline{d}\left(W^{\prime}\right)\right\rangle>0$, then $c^{V}(W)=0$;
d) If $\left\langle\underline{d}(V), \underline{d}\left(W^{\prime}\right)\right\rangle=0$, then $c^{V}(W)=c^{V}\left(W^{\prime}\right) c^{V}\left(W^{\prime \prime}\right)$.

Proof. Consider the following commutative diagram with exact columns:

If $\left\langle\underline{d}\left(V^{\prime}\right), \underline{d}(W)\right\rangle=0$, then $d_{W}^{V^{\prime}}, d_{W}^{V}$ and $d_{W}^{V^{\prime \prime}}$ are all represented by square matrices. It follows that $c^{V}(W)=c^{V^{\prime}}(W) c^{V^{\prime \prime}}(W)$. So b) follows and d) goes similarly. If $\left\langle\underline{d}\left(V^{\prime}\right), \underline{d}(W)\right\rangle<0$, then $d_{W}^{V^{\prime}}$ cannot be surjective, hence d_{W}^{V} is not surjective. Now a) follows and c) goes similarly.

Our main result is that the semi-invariants of type c^{V} (resp. c_{W}) span all the weight spaces in the rings $\operatorname{SI}(Q, \alpha)$.
Theorem 1. Let Q be a quiver without oriented cycles and let β be a dimension vector. The ring of semi-invariants $\operatorname{SI}(Q, \beta)$ is a K-linear span of semi-invariants c^{V} with $\langle\underline{d}(V), \beta\rangle=0$. The analogous result is true for the semi-invariants c_{W}.

After this paper was submitted we learned about the paper [12] where among other things the authors give another proof of Theorem 1 under the assumption that the characteristic of K is zero.

We will prove Theorem 1 in Section 4.
Remark 1. If $V=V_{1} \oplus V_{2}$ is decomposable, then by Lemma 1 we have $c^{V}=0$ if $\left\langle\underline{d}\left(V_{1}\right), \beta\right\rangle \neq 0$, and $c^{V}=c^{V_{1}} c^{V_{2}}$ if $\left\langle\underline{d}\left(V_{1}\right), \beta\right\rangle=0$.

The algebra $\operatorname{SI}(Q, \beta)$ is generated by all c^{V} where V is indecomposable. Generators of $\operatorname{SI}(Q, \beta)$ therefore can be found in the degrees $\langle\alpha, \cdot\rangle$ such that a general representation of dimension α is indecomposable. By [5] this is equivalent to α being a Schur root.

Remark 2. If $\operatorname{Rep}(Q, \beta)$ has a dense $\operatorname{GL}(Q, \beta)$-orbit, then Schofield showed in [10] that the invariants of type c^{V} with V indecomposable generate $\operatorname{SI}(Q, \beta)$ (which is a polynomial ring in this case).

Theorem 1 has the following remarkable consequence.
Corollary 1 (Reciprocity Property). Let α, β be two dimension vectors for the quiver Q. Assume that $\langle\alpha, \beta\rangle=0$. Then

$$
\operatorname{dim}_{K} \mathrm{SI}(Q, \beta)_{\langle\alpha, \cdot\rangle}=\operatorname{dim}_{K} \mathrm{SI}(Q, \alpha)_{-\langle\cdot, \beta\rangle}
$$

Proof. Let V_{1}, \ldots, V_{s} be the modules of dimension α such that $c^{V_{1}}, \ldots, c^{V_{s}}$ form a basis of $\operatorname{SI}(Q, \beta)_{\langle\alpha, \cdot\rangle}$. These are linearly independent polynomials on $\operatorname{Rep}(Q, \beta)$ so there exist s representations W_{1}, \ldots, W_{s} in $\operatorname{Rep}(Q, \beta)$ such that $\operatorname{det}\left(c^{V_{i}}\left(W_{j}\right)\right)_{1 \leq i, j \leq s}$
is not zero. But $c^{V_{i}}\left(W_{j}\right)=c_{W_{j}}\left(V_{i}\right)$ and this means that the semi-invariants $c_{W_{1}}, \ldots, c_{W_{s}}$ are linearly independent. This proves that

$$
\operatorname{dim}_{K} \mathrm{SI}(Q, \beta)_{\langle\alpha, \cdot\rangle} \leq \operatorname{dim}_{K} \mathrm{SI}(Q, \alpha)_{-\langle\cdot, \beta\rangle}
$$

The other inequality is proven in exactly the same way.
In the remainder of this section we investigate the consequences of Theorem 1 First we recall the main results of 11. They can be summarized as follows.

We say that for two dimension vectors α, β the $\operatorname{space}^{\operatorname{Hom}_{Q}}(\alpha, \beta)$ (respectively $\left.\operatorname{Ext}_{Q}(\alpha, \beta)\right)$ vanishes generically if and only if for general representations V, W of dimensions α, β respectively we have $\operatorname{Hom}_{Q}(V, W)=0\left(\operatorname{resp} . \operatorname{Ext}_{Q}(V, W)=0\right)$. We also write $\alpha \hookrightarrow \beta$ if a general representation of dimension β has a subrepresentation of dimension α.

Theorem 2 (Schofield). Let α and β be two dimension vectors for the quiver Q.
a) $\operatorname{Ext}_{Q}(\alpha, \beta)$ vanishes generically if and only if $\alpha \hookrightarrow \alpha+\beta$,
b) $\operatorname{Ext}_{Q}(\alpha, \beta)$ does not vanish generically if and only if $\beta^{\prime} \hookrightarrow \beta$ and $\left\langle\alpha, \beta-\beta^{\prime}\right\rangle<0$ for some dimension vector β^{\prime}.

Part a) is proven in Section 3 of [11], and part b) is proven in Section 5.
Remark 3. Suppose that V and W are general modules of dimension α and β respectively, such that $\langle\alpha, \beta\rangle=0$. The condition in b) is equivalent to $\exists \beta^{\prime} \beta^{\prime} \hookrightarrow \beta$ such that $\left\langle\alpha, \beta^{\prime}\right\rangle>0$. If $c^{V}(W)=0$, then W must have a submodule W^{\prime} such that $\left\langle\alpha, \underline{d}\left(W^{\prime}\right)\right\rangle>0$. This means that the converse of Lemma 1 c$)$ is true for general V and W.

Theorem 3. Let Q be a quiver without oriented cycles and let β be a dimension vector. The semigroup $\Sigma(Q, \beta)$ is the set of all $\sigma \in \Gamma$ such that $\sigma(\beta)=0$ and $\sigma\left(\beta^{\prime}\right) \leq 0$ for all β^{\prime} such that $\beta^{\prime} \hookrightarrow \beta$. Thus this condition is provided by one linear homogeneous equality and finitely many linear homogeneous inequalities. In particular the set $\Sigma(Q, \beta)$ is saturated in the lattice Γ.

Proof. Suppose that $\sigma \in \Gamma^{\star}$. We can write $\sigma=\langle\alpha, \cdot\rangle$ with $\alpha \in \Gamma$.
We will first assume that α is a dimension vector, i.e., $\alpha(x) \geq 0$ for all $x \in Q_{0}$. It follows from Theorem 1 that $\operatorname{SI}(Q, \beta)_{\langle\alpha, \cdot\rangle}$ is non-zero if and only if there exists a representation V of dimension α such that c^{V} is not zero, which is equivalent to $\sigma(\beta)=\langle\alpha, \beta\rangle=0$ and $\operatorname{Ext}_{Q}(\alpha, \beta)$ vanishing generically. By part b$)$ of Theorem (2) $\operatorname{Ext}_{Q}(\alpha, \beta)$ vanishes generically if and only if for all β^{\prime} such that $\beta^{\prime} \hookrightarrow \beta$ we have $\left\langle\alpha, \beta-\beta^{\prime}\right\rangle \geq 0$. This means that for all β^{\prime} such that $\beta^{\prime} \hookrightarrow \beta$ we have $\sigma\left(\beta^{\prime}\right)=\left\langle\alpha, \beta^{\prime}\right\rangle \leq 0$. We conclude that $\operatorname{SI}(Q, \beta)_{\sigma} \neq 0$ if and only if $\sigma(\beta)=0$ and $\sigma\left(\beta^{\prime}\right) \leq 0$ for all $\beta^{\prime} \hookrightarrow \beta$.

If α is not a dimension vector, then $\operatorname{SI}(Q, \beta)_{n \sigma}=0$ for all integers $n>0$. Suppose that $W \in \operatorname{Rep}(Q, \beta)$. From [6] it follows that either $\sigma(\underline{d}(W)) \neq 0$ or there exists a submodule W^{\prime} of W such that $\sigma\left(\underline{d}\left(W^{\prime}\right)\right)>0$. If W is in general position, then we obtain $\sigma(\beta) \neq 0$ or $\sigma\left(\beta^{\prime}\right)>0$ for some $\beta^{\prime} \hookrightarrow \beta$ (see also Remark 5).

Remark 4. Schofield in [11 gives an algorithm allowing one to determine the set of inequalities in Theorem 3 inductively. This algorithm is not very efficient.

Remark 5. A module $W \in \operatorname{Rep}(Q, \beta)$ is called σ-stable if and only if there exist an $n>0$ and an $f \in \operatorname{SI}(Q, \beta)_{n \sigma}$ such that $f(W) \neq 0$. King proved in [6] that a module
$W \in \operatorname{Rep}(Q, \beta)$ is σ-stable if and only if $\sigma\left(W^{\prime}\right) \leq 0$ for all submodules W^{\prime} of W. Applied to a general representation W of dimension β this gives us the equivalence:

$$
\exists n>0 \mathrm{SI}(Q, \beta)_{n \sigma} \neq 0 \Leftrightarrow \sigma(\beta)=0 \text { and } \forall \beta^{\prime} \beta^{\prime} \hookrightarrow \beta \text { we have } \sigma\left(\beta^{\prime}\right) \leq 0
$$

This shows that the saturation of $\Sigma(Q, \beta)$ is given by linear inequalities but it does not show that $\Sigma(Q, \beta)$ is saturated.

Remark 6. In Theorem 3 instead of considering all β^{\prime} with $\beta^{\prime} \hookrightarrow \beta$ we only need to consider those β^{\prime} such that the general representation of dimension β^{\prime} is indecomposable, which is equivalent to β^{\prime} being a Schur root. Still, the set of inequalities obtained in this way may not be a minimal set of inequalities as we will see in the next example.

Example 1. Let Q be the quiver

$$
4 \rightarrow \begin{aligned}
& 1 \\
& \\
& 4 \rightarrow \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& 3
\end{aligned}
$$

and let β be the dimension vector

$$
\begin{array}{lll}
& 1 & \\
1 & 2 & 1
\end{array} .
$$

For a general representation V of Q with dimension vector β, the dimension vectors of indecomposable submodules are:

	0			1			1			1	
1	2	1	1	2	0	1	2	1	0	2	1
	1			1			0			1	
	1			0			0				
	1			0							
0	1	0	0	1	1	0	1	0	1	1	0
	0			0			1			0	

$$
\begin{array}{lll}
& 0 & \\
0 & 1 & 0 \\
& 0 &
\end{array}
$$

Let σ be the weight given by $\sigma(\alpha)=\sum_{i=1}^{5} a_{i} \alpha(i)$, in other words

$$
\sigma=\begin{array}{lll}
& a_{1} \\
a_{4} & \\
a_{5} & a_{2} \\
a_{3}
\end{array}
$$

We investigate when $\operatorname{SI}(Q, \beta)_{\sigma} \neq 0$. First of all we must have $\sigma(\beta)=0$, so $a_{1}+$ $a_{2}+a_{3}+a_{4}+2 a_{5}=0$. In particular $a_{1}+a_{2}+a_{3}+a_{4}$ must be even. The
indecomposable submodules listed above correspond to the inequalities (using $a_{5}=$ $\left.-\left(a_{1}+a_{2}+a_{3}+a_{4}\right) / 2\right)$:

$$
\begin{gather*}
a_{1} \geq 0, a_{2} \geq 0, a_{3} \geq 0, a_{4} \geq 0 \tag{2}\\
a_{1} \leq a_{2}+a_{3}+a_{4}, a_{2} \leq a_{1}+a_{3}+a_{4}, a_{3} \leq a_{1}+a_{2}+a_{4}, a_{4} \leq a_{1}+a_{2}+a_{3}, \\
a_{1}+a_{2}+a_{3}+a_{4} \geq 0
\end{gather*}
$$

The last inequality is redundant.
In the next section we will see how semi-invariants can be interpreted in terms of tensor products of modules of the general linear group. This particular example shows that for a 2-dimensional vector space U, the tensor product of symmetric powers $S_{a_{1}}(U) \otimes S_{a_{2}}(U) \otimes S_{a_{3}}(U) \otimes S_{a_{4}}(U)$ contains a non-trivial $\mathrm{SL}(U)$-invariant subspace if and only if $a_{1}+a_{2}+a_{3}+a_{4}$ is even and the inequalities (2) hold. In this case, the inequalities are obvious from the Clebsch-Gordan formula.

3. Application to Littlewood-Richardson coefficients

Let us apply Theorem 3 in the following special case. Let us define the quiver $Q=T_{n, n, n}$ as follows:

Let us choose the dimension vector $\beta\left(x_{i}\right)=\beta\left(y_{i}\right)=\beta\left(z_{i}\right)=i$ for $i=1, \ldots, n-1$, $\beta(u)=n$. The following proposition is a direct application of Cauchy's formula and is a standard calculation in representation theory.

Proposition 1. The weight space $\mathrm{SI}\left(T_{n, n, n}, \beta\right)_{\sigma}$ is isomorphic to the space of $\mathrm{SL}(U)$-invariants in the triple tensor product $S_{\lambda}(U) \otimes S_{\mu}(U) \otimes S_{\nu}(U)$ of Schur functors on U, where U is the vector space of dimension n, and λ, μ, ν are partitions whose conjugate partitions are given as follows:

$$
\begin{align*}
\lambda^{\prime} & =\left((n-1)^{\sigma\left(x_{n-1}\right)},(n-2)^{\sigma\left(x_{n-2}\right)}, \ldots, 1^{\sigma\left(x_{1}\right)}\right), \\
\mu^{\prime} & =\left((n-1)^{\sigma\left(y_{n-1}\right)},(n-2)^{\sigma\left(y_{n-2}\right)}, \ldots, 1^{\sigma\left(y_{1}\right)}\right), \tag{3}\\
\nu^{\prime} & =\left((n-1)^{\sigma\left(z_{n-1}\right)},(n-2)^{\sigma\left(z_{n-2}\right)}, \ldots, 1^{\sigma\left(z_{1}\right)}\right) .
\end{align*}
$$

Here $\sigma(q)$ is defined as $\sigma\left(e_{q}\right)$ where the dimension vector e_{q} is given by $e_{q}(q)=1$ and $e_{q}(p)=0$ if $p \neq q$.
Proof. Let us denote by a_{i} (resp. b_{i}, c_{i}) the arrow in $T_{n, n, n}$ with $t a_{i}=x_{i}, h a_{i}=x_{i+1}$ (resp. $t b_{i}=y_{i}, h b_{i}=y_{i+1}, t c_{i}=z_{i}, h c_{i}=z_{i+1}$) for $1 \leq i \leq n-1$. The space $\operatorname{Rep}\left(T_{n, n, n}, \beta\right)$ can be identified with

$$
\bigoplus_{1 \leq i \leq n-1}\left(\operatorname{Hom}\left(V\left(x_{i}\right), V\left(x_{i+1}\right)\right) \oplus \operatorname{Hom}\left(V\left(y_{i}\right), V\left(y_{i+1}\right)\right) \oplus \operatorname{Hom}\left(V\left(z_{i}\right), V\left(z_{i+1}\right)\right)\right)
$$

where we write $x_{n}=y_{n}=z_{n}=u$.

The Cauchy formula [4, §A.1] gives the decomposition of $K\left[\operatorname{Rep}\left(T_{n, n, n}, \beta\right)\right]$ as a direct sum over the $3(n-1)$-tuples of partitions

$$
\left(\left(\alpha^{i}\right)_{1 \leq i \leq n-1},\left(\beta^{i}\right)_{1 \leq i \leq n-1},\left(\gamma^{i}\right)_{1 \leq i \leq n-1}\right)
$$

of the summands

$$
\begin{aligned}
\bigotimes_{1 \leq i \leq n-1}\left(S_{\alpha^{i}} V\left(x_{i}\right) \otimes S_{\alpha^{i}} V\left(x_{i+1}\right)^{*} \otimes S_{\beta^{i}} V\left(y_{i}\right) \otimes\right. & S_{\beta^{i}} V\left(y_{i+1}\right)^{*} \\
& \left.\otimes S_{\gamma^{i}} V\left(z_{i}\right) \otimes S_{\gamma^{i}} V\left(z_{i+1}\right)^{*}\right) .
\end{aligned}
$$

Let us denote $H=\prod_{1 \leq i \leq n-1}\left(\mathrm{SL}\left(V\left(x_{i}\right)\right) \times \mathrm{SL}\left(V\left(y_{i}\right)\right) \times \mathrm{SL}\left(V\left(z_{i}\right)\right)\right)$. Then it follows from the Littlewood-Richardson Rule [4, §A.1] that the summand corresponding to the $3(n-1)$-tuple

$$
\left(\left(\alpha^{i}\right)_{1 \leq i \leq n-1},\left(\beta^{i}\right)_{1 \leq i \leq n-1},\left(\gamma^{i}\right)_{1 \leq i \leq n-1}\right)
$$

contains an H-invariant if and only if we have for each $i, 1 \leq i \leq n-1$,

$$
\begin{aligned}
\left(\alpha^{i}\right)^{\prime} & =\left((i)^{\sigma\left(x_{i}\right)},(i-1)^{\sigma\left(x_{i-1}\right)}, \ldots, 1^{\sigma\left(x_{1}\right)}\right), \\
\left(\beta^{i}\right)^{\prime} & =\left((i)^{\sigma\left(y_{i}\right)},(i-1)^{\sigma\left(y_{i-1}\right)}, \ldots, 1^{\sigma\left(y_{1}\right)}\right), \\
\left(\gamma^{i}\right)^{\prime} & =\left((i)^{\sigma\left(z_{i}\right)},(i-1)^{\sigma\left(z_{i-1}\right)}, \ldots, 1^{\sigma\left(z_{1}\right)}\right)
\end{aligned}
$$

for some non-negative numbers $\sigma\left(x_{i}\right), \sigma\left(y_{i}\right), \sigma\left(z_{i}\right)$. Moreover, if these conditions are satisfied, then the space of H-invariants is isomorphic to

$$
S_{\alpha^{n-1}} V(u)^{*} \otimes S_{\beta^{n-1}} V(u)^{*} \otimes S_{\gamma^{n-1}} V(u)^{*}
$$

Therefore the space of $\operatorname{SL}\left(T_{n, n, n}, \beta\right)$-semi-invariants can be identified with the space of $\mathrm{SL}(V(u))$-invariants in the above triple tensor product.

Corollary 2. The set of triples of partitions (λ, μ, ν) such that the space of $\mathrm{SL}(U)$ invariants in $S_{\lambda}(U) \otimes S_{\mu}(U) \otimes S_{\nu}(U)$ is non-zero, in the space of triples of weights is given by a finite set of linear homogeneous inequalities in the parts of λ, μ, ν and the condition that $|\lambda|+|\mu|+|\nu|$ is divisible by $n:=\operatorname{dim} U$.

Proof. Let $\sigma \in \Gamma$ be given by (3) and let $\sigma(\beta)=0$. All components of σ are integers only if $|\lambda|+|\mu|+|\nu|$ is divisible by n, because

$$
0=\sigma(\beta)=n \sigma(u)+\sum_{i=1}^{n-1} i\left(\sigma\left(x_{i}\right)+\sigma\left(y_{i}\right)+\sigma\left(z_{i}\right)\right)=n \sigma(u)+|\lambda|+|\mu|+|\nu| .
$$

By Theorem 3 and Proposition [1] those (λ, μ, ν) for which $\operatorname{SI}\left(T_{n, n, n}, \beta\right)_{\sigma} \neq 0$ are given by $\sigma(\beta)=0$ and a finite set of homogeneous linear inequalities in $\sigma\left(x_{i}\right), \sigma\left(y_{i}\right), \sigma\left(z_{i}\right), 1 \leq i \leq n-1$. These inequalities can be written as inequalities in the parts of λ, μ and ν.

4. The proof of Theorem 1

We define $[x, y]$ to be the vector space with the basis formed by paths from x to y. We assumed that Q has no oriented cycles, so the spaces $[x, y]$ are finite dimensional.

The indecomposable projective representations are in a bijection with Q_{0}. The indecomposable projective corresponding to x is defined by

$$
P_{x}(y)=[x, y], \quad P_{x}(a)=a \circ \cdot:[x, t a] \rightarrow[x, h a]
$$

where $P_{x}(a)$ is given by the composition $p \mapsto a \circ p$. We have $\operatorname{Hom}_{Q}\left(P_{x}, V\right)=V(x)$. In particular $\operatorname{Hom}_{Q}\left(P_{x}, P_{y}\right)=[y, x]$.

We choose a numbering $Q_{0}=\left\{x_{1}, \ldots, x_{n}\right\}$ of vertices of Q such that for every $\alpha \in Q_{1}$ with $t \alpha=x_{i}, h \alpha=x_{j}$, we have $i<j$. Let $b_{i, j}$ be the number of arrows $\alpha \in Q_{1}$ with $t \alpha=x_{i}, h \alpha=x_{j}$. Let $p_{i, j}=\operatorname{dim}\left[x_{i}, x_{j}\right]$ be the number of paths p in Q such that $t p=x_{i}, h p=x_{j}$.

The relations between the $\alpha\left(x_{j}\right)$ and $\sigma\left(x_{i}\right)$ are as follows:

$$
\begin{align*}
& \sigma\left(x_{j}\right)=\alpha\left(x_{j}\right)-\sum_{i<j} b_{i, j} \alpha\left(x_{i}\right) \tag{4}\\
& \alpha\left(x_{j}\right)=\sigma\left(x_{j}\right)+\sum_{i<j} p_{i, j} \sigma\left(x_{i}\right) \tag{5}
\end{align*}
$$

We define the m-arrow quiver Θ_{m} as a quiver with two vertices x_{+}and x_{-}, and m arrows a_{1}, \ldots, a_{m} with $t a_{i}=x_{-}, h a_{i}=x_{+}$for $i=1, \ldots, m$. We define the weight τ given by $\tau\left(x_{+}\right)=1, \tau\left(x_{-}\right)=-1$. The dimension vector $\theta(n)$ is defined by $\theta(n)\left(x_{+}\right)=\theta(n)\left(x_{-}\right)=n$.

The idea of the proof of Theorem 1 is to reduce the calculation to the weight space $\operatorname{SI}\left(\Theta_{m}, \theta(n)\right)_{\tau}$. The method comes from Classical Invariant Theory with a slight adjustment to accomodate the definition of semi-invariants c^{V}.

Proof of Theorem (1) Let us fix Q, β and a weight σ. We proceed in three steps. In the first step, we reduce the theorem to the case that Q is a quiver with exactly one source x_{-}and one $\operatorname{sink} x_{+}$, and $\sigma\left(x_{-}\right)=1, \sigma\left(x_{+}\right)=-1$ and σ is zero on all other vertices. In the second step we reduce to the case that there are no vertices x with $\sigma(x)=0$. The only case left is the quiver Θ_{m} with weight τ. In Step 3 we will prove the theorem in this case.

Step 1. Construct a quiver $Q(\sigma)$ as follows:

$$
\begin{aligned}
& Q(\sigma)_{0}=Q_{0} \cup x_{-} \cup x_{+} \\
& Q(\sigma)_{1}=Q_{1} \cup Q_{-} \cup Q_{+}
\end{aligned}
$$

where Q_{-}consists of the set of arrows from x_{-}to x_{i}, with $\sigma\left(x_{i}\right)$ arrows going to the vertex x_{i} for which $\sigma\left(x_{i}\right)>0$ and no arrows going to other vertices. The set Q_{+}consists of the set of arrows from x_{i} to x_{+}, with $-\sigma\left(x_{i}\right)$ arrows going from the vertex x_{i} for which $\sigma\left(x_{i}\right)<0$ and no arrows going from other vertices to x_{+}.

Example 2. Let Q be the quiver

Let $\sigma=(1,1,-2)$. Then the quiver $Q(\sigma)$ is

We will write $\bar{Q}=Q(\sigma)$. Define the weight $\bar{\sigma}$ of \bar{Q} by $\bar{\sigma}\left(x_{-}\right)=1, \bar{\sigma}\left(x_{i}\right)=$ $0, \bar{\sigma}\left(x_{+}\right)=-1$. The dimension vector $\bar{\beta}=\beta(\sigma)$ is defined by $\bar{\beta}\left(x_{i}\right)=\beta\left(x_{i}\right)$, $\bar{\beta}\left(x_{-}\right)=\sum_{\left\{i \mid \sigma\left(x_{i}\right)>0\right\}} \sigma\left(x_{i}\right) \beta\left(x_{i}\right), \bar{\beta}\left(x_{+}\right)=\sum_{\left\{i \mid \sigma\left(x_{i}\right)<0\right\}}-\sigma\left(x_{i}\right) \beta\left(x_{i}\right)$. Suppose that $W \in \operatorname{Rep}(\bar{Q}, \bar{\beta})$. The matrices of all maps $W(a)$ with $a \in Q_{-}$form a square matrix. Let $D^{-}(W)$ be the determinant of this block matrix. Let $D^{+}(W)$ be the determinant of all $W(a)$ with $a \in Q_{+}$. Then the correspondence $c \rightarrow D^{-} c D^{+}$gives the isomorphism of weight spaces $\operatorname{SI}(Q, \beta)_{\sigma} \rightarrow \mathrm{SI}(\bar{Q}, \bar{\beta})_{\bar{\sigma}}$.

Let $\bar{\alpha}$ be the dimension vector of \bar{Q} such that $\bar{\sigma}=\langle\bar{\alpha}, \cdot\rangle$. Let \bar{V} be a representation of \bar{Q} with dimension vector $\bar{\alpha}$ and let $c^{\bar{V}}$ be the corresponding non-zero semi-invariant on $\operatorname{SI}(\bar{Q}, \bar{\beta})$.
Proposition 2. The factor c in the decomposition $c^{\bar{V}}=D^{-} c D^{+}$is of the form c^{V} for some $V \in \operatorname{Rep}(Q, \alpha)$.
Proof. Notice that the weight of D^{-}is equal to $\left\langle\gamma_{-}, \cdot\right\rangle$ where

$$
\gamma_{-}\left(x_{-}\right)=1, \quad \gamma_{-}\left(x_{j}\right)=\gamma_{-}\left(x_{+}\right)=0 .
$$

Similarly, by (5), the weight of D^{+}equals $\left\langle\gamma_{+}, \cdot\right\rangle$ where

$$
\begin{gathered}
\gamma_{+}\left(x_{-}\right)=0, \quad \gamma_{+}\left(x_{j}\right)=-\sum_{\substack{i \leq j \\
\sigma\left(x_{i}\right)<0}} p_{i, j} \sigma\left(x_{i}\right), \\
\gamma_{+}\left(x_{+}\right)=-1+\sum_{\substack{j \\
\sigma\left(x_{j}\right)<0}} \sum_{\substack{i \leq j \\
\sigma\left(x_{i}\right)<0}} p_{i, j} \sigma\left(x_{i}\right) \sigma\left(x_{j}\right) .
\end{gathered}
$$

It is easy to see that $\left\langle\gamma_{-}, \bar{\beta}\right\rangle=\left\langle\gamma_{+}, \bar{\beta}\right\rangle=0$.
Let $\bar{V} \in \operatorname{Rep}(\bar{Q}, \bar{\alpha})$. Then \bar{V} has an obvious submodule $\bar{V}_{1}=\left.\bar{V}\right|_{\bar{Q}_{0} \backslash\left\{x_{-}\right\}}$. We have an exact sequence

$$
0 \rightarrow \bar{V}_{1} \rightarrow \bar{V} \rightarrow \bar{V}_{2} \rightarrow 0
$$

with the dimension of \bar{V}_{2} equal to γ_{-}.
Let M be the module defined by the exact sequence

$$
0 \rightarrow P_{x_{+}} \xrightarrow{i} \bigoplus_{b, h b=x_{+}} P_{t b} \rightarrow M \rightarrow 0
$$

where the morphism i from $P_{x_{+}}$to a copy $P_{t b}$ maps the trivial path $e\left(x_{+}\right)$to the path b. The dimension vector of M is γ_{+}, and c^{M} is the determinant D^{+}. Consider the map

$$
\sum_{\substack{b \\ h b=x_{+}}} \bar{V}_{1}(b): \bigoplus_{b, h b=x_{+}} \bar{V}_{1}(t b) \rightarrow \bar{V}_{1}\left(x_{+}\right) .
$$

The dimension of the kernel is at least 1 . Let $\left(s_{b}\right)_{b, h b=x_{+}}$with $s_{b} \in \bar{V}_{1}(t b)$ be a non-trivial element in the kernel. We can now define a map $\bigoplus_{b, h b=x_{+}} P_{t b} \rightarrow \bar{V}_{1}$ by sending the generator $e(t b) \in P_{t b}(t b)$ to s_{b} for all b. Because $\left(s_{b}\right)_{b, h b=x_{+}}$lies in the kernel, this actually defines a morphism $M \rightarrow \bar{V}_{1}$. Let \bar{V}_{3} be the image of this morphism.

Now \bar{V}_{3} is a submodule of \bar{V}_{1} and $c^{\bar{V}_{1}} \neq 0$. By Lemma \square a) we have $\left\langle\underline{d}\left(\bar{V}_{3}\right), \bar{\beta}\right\rangle \geq$ 0 . We also have $c^{M}=D^{+} \neq 0$. If we apply Lemma a) to the kernel N of
$M \rightarrow \bar{V}_{3}$, then we get $\langle\underline{d}(N), \bar{\beta}\rangle=\left\langle\gamma_{+},-\underline{d}\left(\bar{V}_{3}\right)\right\rangle=-\left\langle\underline{d}\left(\bar{V}_{3}\right), \bar{\beta}\right\rangle \geq 0$. We conclude that $\left\langle\underline{d}\left(\bar{V}_{3}\right), \bar{\beta}\right\rangle=0$. By Lemma 1 b$) c^{\bar{V}_{3}}$ divides the semi-invariant $c^{M}=D^{+}$. Because D^{+}is an irreducible semi-invariant we must have $c^{\bar{V}_{3}}=D^{+}, \gamma_{+}=\operatorname{dim} \bar{V}_{3}$ and \bar{V}_{3} is isomorphic to M.

We have an exact sequence

$$
0 \rightarrow \bar{V}_{3} \rightarrow \bar{V}_{1} \rightarrow \bar{V}_{4} \rightarrow 0
$$

Now it is clear by the multiplicative property that $c^{\bar{V}}=c^{\bar{V}_{2}} c^{\bar{V}_{4}} c^{\bar{V}_{3}}$ with the first factor being proportional to D^{-}and the last one to D^{+}. Let us also define a submodule $\bar{V}_{5}=\left.\bar{V}_{4}\right|_{\left\{x_{+}\right\}}$, so we have an exact sequence

$$
0 \rightarrow \bar{V}_{5} \rightarrow \bar{V}_{4} \rightarrow \bar{V}_{6} \rightarrow 0
$$

Note that \bar{V}_{6} has support within Q. The restriction of \bar{V}_{6} to Q will be denoted by V. We will prove that the restriction of $c^{\hat{V}}$ to $\operatorname{Rep}(Q, \beta)$ is c^{V}.

Extend $W \in \operatorname{Rep}(Q, \beta)$ to the module \bar{W} of dimension $\bar{\beta}$ by putting $\bar{W}\left(x_{-}\right)=$ $\bigoplus_{a, t a=x_{-}} W(h a), \bar{W}\left(x_{+}\right)=\bigoplus_{b, h b=x_{+}} W(t b)$, with the maps $\bar{W}(a)$ and $\bar{W}(b)$ being the components of the identity map. Define the canonical submodule $\bar{W}_{1}=$ $\left.\bar{W}\right|_{\left\{x_{+}\right\}}$. We have an exact sequence

$$
0 \rightarrow \bar{W}_{1} \rightarrow \bar{W} \rightarrow \bar{W}_{2} \rightarrow 0
$$

Define the submodule $\bar{W}_{3}=\left.\bar{W}_{2}\right|_{\hat{Q} \backslash\left\{x_{-}\right\}}$of \bar{W}_{2}. Now we have an exact sequence

$$
0 \rightarrow \bar{W}_{3} \rightarrow \bar{W}_{2} \rightarrow \bar{W}_{4} \rightarrow 0
$$

The representation \bar{W}_{3} has support within Q and its restriction to Q is just W.
We now have

$$
c^{\bar{V}}(\bar{W})=c^{\bar{V}_{4}}(\bar{W})=c^{\bar{V}_{4}}\left(\bar{W}_{1}\right) c^{\bar{V}_{4}}\left(\bar{W}_{3}\right) c^{\bar{V}_{4}}\left(\bar{W}_{4}\right)=c^{\bar{V}_{4}}\left(\bar{W}_{3}\right)
$$

because $c^{\bar{V}_{4}}\left(\bar{W}_{1}\right)$ and $c^{\bar{V}_{4}}\left(\bar{W}_{4}\right)$ are constant. Moreover,

$$
c^{\bar{V}_{4}}\left(\bar{W}_{3}\right)=c^{\bar{V}_{5}}\left(\bar{W}_{3}\right) c^{\bar{V}_{6}}\left(\bar{W}_{3}\right)=c^{\bar{V}_{6}}\left(\bar{W}_{3}\right)=c^{V}(W)
$$

because $c^{\bar{V}_{5}}\left(\bar{W}_{4}\right)$ is constant. This concludes the proof of the proposition.
Step 2. Let Q, β, σ be as above. Let $x \in Q_{0}$ be a vertex such that $\sigma(x)=0$. Let a_{1}, \ldots, a_{s} be the arrows in Q_{1} with $h a_{k}=x(k=\underline{1}, \ldots, s)$ and let b_{1}, \ldots, b_{t} be the arrows in Q_{1} with $t b_{l}=x(l=1, \ldots, t)$. Let \bar{Q} be the quiver such that $\bar{Q}_{0}=Q_{0} \backslash\{x\}$ and $\bar{Q}_{1}=\left(Q_{1} \backslash\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}\right) \cup\left\{b a_{k, l}\right\}_{1 \leq k \leq s, 1 \leq l \leq t}$, where $t\left(b a_{k, l}\right)=t a_{k}, h\left(b a_{k, l}\right)=h b_{l}$. Let $\bar{\beta}, \bar{\sigma}$ be the restrictions of β, σ to $Q_{0} \backslash\{x\}$.

The Fundamental Theorem of Invariant Theory (see [2] for a characteristic free version) says that every semi-invariant from $\operatorname{SI}(Q, \beta)_{\sigma}$ can be obtained from the semi-invariants from $\operatorname{SI}(\bar{Q}, \bar{\beta})_{\bar{\sigma}}$ by substituting the actual compositions $b_{l} a_{k}$ for the arrows of type $b a_{k, l}$. Assuming Theorem 1 for $\operatorname{SI}(\bar{Q}, \bar{\beta})_{\bar{\sigma}}$ to be true, we need to show that every semi-invariant $c^{\bar{V}}$ from $\operatorname{SI}(\bar{Q}, \bar{\beta})_{\bar{\sigma}}$ pulls back to a semi-invariant of type c^{V}. For a given representation \bar{V} of \bar{Q} of dimension $\bar{\alpha}$ we define the representation $V=$ ind \bar{V} as follows. We notice that the condition $\sigma(x)=0$ means that we expect $\operatorname{dim} V(x)=\sum_{k=1}^{s} \operatorname{dim} V\left(t a_{k}\right)$.

This means we put

$$
V(y)= \begin{cases}\bar{V}(y) & \text { if } y \neq x \\ \bigoplus_{k=1}^{s} \bar{V}\left(t a_{k}\right) & \text { if } y=x\end{cases}
$$

We define the linear maps $V(a)$ as follows:

$$
V(a)= \begin{cases}\bar{V}(a) & \text { if } a \neq a_{k}, b_{l}, \\ i\left(a_{k}\right) & \text { if } a=a_{k}, \\ \sum_{k=1}^{s} \bar{V}\left(b a_{k, l}\right) & \text { if } b=b_{l},\end{cases}
$$

where $i\left(a_{k}\right): V\left(t a_{k}\right) \rightarrow \bigoplus_{k=1}^{s} V\left(t a_{k}\right)$ is the injection on the k-th summand.
Then it is easy to check directly from the definition of semi-invariants c^{V} that if the representation $\bar{W}=$ res W of dimension $\bar{\beta}$ is a restriction of a representation W of Q of dimension β, then $c^{\bar{V}}(\bar{W})=c^{V}(W)$.

Notice that the functor ind \bar{V} is the left adjoint of the obvious restriction functor res : $\operatorname{Rep}(Q) \rightarrow \operatorname{Rep}(\bar{Q})$, i.e., we have the natural isomorphisms

$$
\operatorname{Hom}_{Q}(\operatorname{ind} \bar{V}, W)=\operatorname{Hom}_{\bar{Q}}(\bar{V}, \text { res } W)
$$

which explains why $c^{\bar{V}}(\bar{W})$ and $c^{V}(W)$ vanish simultaneously.
Step 3. It remains to deal directly with the weight space $\operatorname{SI}\left(\Theta_{m}, \theta(n)\right)_{\tau}$. Writing the representation W of dimension $\theta(n)$ as an m-tuple of linear maps,

$$
W\left(a_{1}\right), \ldots, W\left(a_{m}\right): W_{-} \rightarrow W_{+}
$$

we can introduce the additional action of the group GL (m) acting on this space by taking linear combinations of the linear maps $W\left(a_{1}\right), \ldots, W\left(a_{m}\right)$. Using the Cauchy formula (in its characteristic free version, say from [1]) we see that the space $\operatorname{SI}\left(\Theta_{m}, \theta(n)\right)_{\tau}$ of semi-invariants can be identified with $\bigwedge^{n} W_{-} \otimes \bigwedge^{n} W_{+}^{*} \otimes D_{n}\left(K^{m}\right)$. Here D_{n} denotes the n-th divided power. Since the divided power $D_{n}\left(K^{m}\right)$ is generated as a GL (m)-module by its highest weight vector (which corresponds to the semi-invariant $\operatorname{det} W\left(a_{1}\right)$) and the set of semi-invariants of the form c^{V} is preserved by the action of GL (m), it is enough to express det $W\left(a_{1}\right)$ as the semi-invariant of the form c^{V}. Notice that $\tau=\langle\alpha, \cdot\rangle$ for the dimension vector $\alpha=(1, m-1)$. Taking the module V to be the m-tuple of linear maps $V\left(a_{1}\right), \ldots, V\left(a_{m}\right): K \rightarrow K^{m-1}$ where $V\left(a_{1}\right)=0$ and $V\left(a_{i}\right)$ is the embedding sending 1 to the $i-1$ 'st basis vector, for $i=2, \ldots, m$, we check directly that $c^{V}=\operatorname{det} W\left(a_{1}\right)$. This concludes the proof of Theorem 1

We now will give another description for semi-invariants $\operatorname{SI}(Q, \beta)_{\sigma}$. Let $\bar{Q}=$ $Q(\sigma), \bar{\beta}$ and $\bar{\sigma}$ be as in Step 1 of the proof of Theorem1. We know that $\operatorname{SI}(Q, \beta)_{\sigma} \cong$ $\operatorname{SI}(\bar{Q}, \bar{\beta})_{\bar{\sigma}}$. Let $\bar{\alpha}$ be a dimension vector of \bar{Q} such that $\langle\bar{\alpha}, \cdot\rangle=\bar{\sigma}$. $\operatorname{Now} \operatorname{SI}(\bar{Q}, \bar{\beta})_{\bar{\sigma}}$ is generated by semi-invariants $c^{\bar{V}}$ with $\underline{d}(\bar{V})=\bar{\alpha}$. In fact we only need to take those $c^{\bar{V}}$ where \bar{V} lies in a Zariski dense set of $\operatorname{Rep}(\bar{Q}, \bar{\alpha})$. A general representation \bar{V} of dimension $\bar{\alpha}$ has the following projective resolution:

$$
0 \rightarrow P_{x_{+}} \xrightarrow{d_{V}} P_{x_{-}} \rightarrow \bar{V} \rightarrow 0
$$

with $d_{V} \in \operatorname{Hom}_{Q}\left(P_{x_{+}}, P_{x_{-}}\right)=\left[x_{-}, x_{+}\right]$. So d_{V} can be seen as some linear combination $\sum_{i=1}^{r} \lambda_{i} p_{i}$ where p_{1}, \ldots, p_{r} are all paths from x_{+}to x_{-}. For any $\bar{W} \in \operatorname{Rep}(\bar{Q}, \bar{\beta})$ we have the following exact sequence:

$$
0 \rightarrow \operatorname{Hom}_{\bar{Q}}(\bar{V}, \bar{W}) \rightarrow \operatorname{Hom}_{\bar{Q}}\left(P_{x_{+}}, \bar{W}\right) \xrightarrow{\tilde{d}_{\bar{\rightharpoonup}}} \operatorname{Hom}_{\bar{Q}}\left(P_{x_{-}}, \bar{W}\right) \rightarrow \operatorname{Ext}_{\bar{Q}}(\bar{V}, \bar{W}) \rightarrow 0
$$

It is easy to see that $\operatorname{det}\left(\tilde{d}_{\bar{V}}\right)=c^{\bar{V}}(\bar{W})=c^{V}(W)$.
We have that

$$
\begin{aligned}
& \operatorname{Hom}_{\bar{Q}}\left(P_{x_{+}}, \bar{W}\right) \cong \bar{W}_{x_{+}}=\bigoplus_{\sigma\left(x_{i}\right)>0} W\left(x_{i}\right)^{\sigma\left(x_{i}\right)}, \\
& \operatorname{Hom}_{\bar{Q}}\left(P_{x_{-}}, \bar{W}\right) \cong \bar{W}_{x_{-}}=\bigoplus_{\sigma\left(x_{i}\right)<0} W\left(x_{i}\right)^{\sigma\left(x_{i}\right)}, \\
& \tilde{d}_{\bar{V}}=\sum_{i} \lambda_{i} \bar{V}\left(p_{i}\right) .
\end{aligned}
$$

Let F be a function from the set of paths from x_{+}to x_{-}to the set of non-negative integers. For each such F we can define the semi-invariant I_{F} as the coefficient of $\lambda_{1}^{F\left(p_{1}\right)} \lambda_{2}^{F\left(p_{2}\right)} \ldots \lambda_{r}^{F\left(p_{r}\right)}$ in $\operatorname{det}\left(\tilde{d}_{\bar{V}}\right)$.
Corollary 3. The space of semi-invariants $\operatorname{SI}(Q, \beta)_{\sigma}$ is spanned by semi-invariants of the form I_{F}.

A necessary condition for I_{F} to be non-zero is

$$
\sum_{i} F\left(p_{i}\right)=\sum_{\sigma\left(x_{i}\right)>0} \sigma\left(x_{i}\right) \beta\left(x_{i}\right)=\sum_{\sigma\left(x_{i}\right)<0}-\sigma\left(x_{i}\right) \beta\left(x_{i}\right) .
$$

Acknowledgement

The authors would like to thank Andrei Zelevinsky for helpful suggestions.

References

[1] K. Akin, D. A. Buchsbaum, J. Weyman, Schur functors and Schur complexes, Adv. Math. 44 (1982), 207-278. MR 84c:20021
[2] C. DeConcini, C. Procesi, Characteristic free approach to invariant theory, Adv. Math. 21 (1976), 330-354. MR 54:10305
[3] W. Fulton, Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Séminaire Bourbaki (1998). MR 99m:00026
[4] W. Fulton, J. Harris, Representation Theory, Springer-Verlag, New York, 1991. MR 93a:20069
[5] V. Kac, Infinite root systems, representations of graphs and invariant theory II, J. Algebra 78 (1982), 141-162. MR 85b:17003
[6] A. D. King, Moduli of representation of finite dimensional algebras, Quart. J. Math. Oxford (2) 45 (1994), 515-530. MR 96a:16009
[7] A. Klyachko, Stable vector bundles and Hermitian operators, IGM, University of Marne-laVallee, preprint (1994).
[8] A. Knutson, T. Tao, The honeycomb model of $\mathrm{GL}_{n}(\mathbb{C})$ tensor products, I: Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090. MR 2000c:20066
[9] C.M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976) 269-302. MR 54:10340
[10] A. Schofield, Semi-invariants of quivers, J. London Math. Soc. 43 (1991), 383-395. MR 92g:16019
[11] A. Schofield, General representations of quivers, Proc. London Math. Soc. (3) 65 (1992) 46-64. MR 93d:16014
[12] A. Schofield, M. van den Bergh, Semi-invariants of quivers for arbitrary dimension vectors, preprint, math.RA/9907174.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02151

E-mail address: hderksen@math.mit.edu
Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
E-mail address: weyman@neu.edu

[^0]: Received by the editors July 20, 1999.
 2000 Mathematics Subject Classification. Primary 13A50; Secondary 14L24, 14L30, 16G20, 20G05.

 Key words and phrases. Quiver representations, semi-invariants, Littlewood-Richardson coefficients, Klyachko cone, saturation.

 The second author was supported by NSF, grant DMS 9700884 and KBN No. PO3A 01214.

