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SEMI-INVARIANTS OF QUIVERS AND SATURATION
FOR LITTLEWOOD-RICHARDSON COEFFICIENTS

HARM DERKSEN AND JERZY WEYMAN

1. Introduction

Let Q be a quiver without oriented cycles. Let α be a dimension vector for
Q. We denote by SI(Q,α) the ring of semi-invariants of the set of α-dimensional
representations of Q over a fixed algebraically closed field K.

In this paper we prove some results about the set

Σ(Q,α) = { σ | SI(Q,α)σ 6= 0 }.

Σ(Q,α) is defined in the space of all weights by one homogeneous linear equation
and by a finite set of homogeneous linear inequalities. In particular the set Σ(Q,α)
is saturated, i.e., if nσ ∈ Σ(Q,α), then also σ ∈ Σ(Q,α).

These results, when applied to a special quiver Q = Tn,n,n and to a special
dimension vector, show that the GLn-module Vλ appears in Vµ ⊗ Vν if and only
if the partitions λ, µ and ν satisfy an explicit set of inequalities. This gives new
proofs of the results of Klyachko ([7, 3]) and Knutson and Tao ([8]).

The proof is based on another general result about semi-invariants of quivers
(Theorem 1). In the paper [10], Schofield defined a semi-invariant cW for each
indecomposable representation W of Q. We show that the semi-invariants of this
type span each weight space in SI(Q,α). This seems to be a fundamental fact,
connecting semi-invariants and modules in a direct way. Given this fact, the results
on sets of weights follow at once from the results in another paper of Schofield [11].

2. The results

A quiver Q is a pair Q = (Q0, Q1) consisting of the set of vertices Q0 and the
set of arrows Q1. Each arrow a has its head ha and tail ta, both in Q0:

ta
a−→ha.

We fix an algebraically closed field K. A representation (or a module) V of Q is
a family of finite dimensional vector spaces {V (x) |x ∈ Q0 } and of linear maps
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V (a) : V (ta)→ V (ha). The dimension vector of a representation V is the function
d(V ) : Q0 → Z≥0 defined by d(V )(x) := dimV (x). The dimension vectors lie in
the space Γ of integer-valued functions on Q0. A morphism φ : V → V ′ of two
representations is a collection of linear maps φ(x) : V (x) → V ′(x), x ∈ Q0, such
that for each a ∈ Q1 we have φ(ha)V (a) = V ′(a)φ(ta). We denote the linear space
of morphisms from V to V ′ by HomQ(V, V ′).

A path p in Q is a sequence of arrows p = a1, . . . , an such that hai = tai+1

(1 ≤ i ≤ n − 1). We define tp = ta1, hp = han. We also have the trivial path
e(x) from x to x. If V is a representation and p = a1, . . . , an, then we define
V (p) := V (an)V (an−1) · · ·V (a1). We assume throughout the paper that Q has no
oriented cycles, i.e., there are no paths p = a1, . . . , an such that ta1 = han.

For representations V and W of Q there is a canonical exact sequence ([9])

(1) 0→ HomQ(V,W ) i→
⊕
x∈Q0

Hom(V (x),W (x))

dVW−→
⊕
a∈Q1

Hom(V (ta),W (ha))
p→ ExtQ(V,W )→ 0.

The map i is the obvious inclusion, the map dVW is given by

{f(x)}x∈Q0 7→ {f(ha)V (a)−W (a)f(ta)}a∈Q1 ,

and the map p constructs an extension of the representations V and W by adding
the maps V (ta)→W (ha) to the direct sum representation V ⊕W .

For α, β ∈ Γ we define the Euler inner product

〈α, β〉 =
∑
x∈Q0

α(x)β(x) −
∑
a∈Q1

α(ta)β(ha).

It follows from (1) that 〈d(V ), d(W )〉 = dimK HomQ(V,W )− dimK ExtQ(V,W ).
For a dimension vector α we denote by

Rep(Q,α) :=
⊕
a∈Q1

Hom(Kα(ta),Kα(ha))

the vector space of α-dimensional representations of Q. The group

GL(Q,α) :=
∏
x∈Q0

GL(α(x))

and its subgroup

SL(Q,α) =
∏
x∈Q0

SL(α(x))

act on Rep(Q,α) in an obvious way. We are interested in the ring of semi-invariants

SI(Q,α) := K[Rep(Q,α)]SL(Q,α).
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The ring SI(Q,α) has a weight space decomposition

SI(Q,α) =
⊕
σ

SI(Q,α)σ

where σ runs through the (one-dimensional irreducible) characters of GL(Q,α) and

SI(Q,α)σ = { f ∈ K[Rep(Q,α)] | g(f) = σ(g)f ∀g ∈ GL(Q,α) }.

Suppose that σ lies in the dual space Γ? := Hom(Γ,Z). For each dimension vector
α we can associate to σ a character of GL(Q,α) defined as∏

x∈Q0

dσ(ex)
x

where dx is the determinant function on GL(α(x)) and ex is the dimension vector
defined by

ex(y) =
{

1 if x = y,
0 otherwise.

In this way we will identify characters with Γ?. Sometimes, for convenience, we will
write σ(x) instead of σ(ex) (and treat σ as an element of Γ).

Let us choose the dimension vectors α and β in such way that 〈α, β〉 = 0. Then
for every V ∈ Rep(Q,α) and W ∈ Rep(Q, β) the matrix of dVW will be a square
matrix. Following [10] we can therefore define the semi-invariant c of the action
of GL(Q,α) × GL(Q, β) on Rep(Q,α) × Rep(Q, β) by c(V,W ) := det dVW . The
value of the determinant depends on the choices of bases, so c is well-defined up
to a scalar. Notice that the semi-invariant c vanishes at the point (V,W ) if and
only if HomQ(V,W ) 6= 0 which is equivalent to ExtQ(V,W ) 6= 0. For a fixed V the
restriction of c to {V }×Rep(Q, β) defines a semi-invariant cV in SI(Q, β). Schofield
proves ([10, Lemma 1.4]) that the weight of cV equals 〈α, ·〉 ∈ Γ? which is defined
as γ 7→ 〈α, γ〉. Similarly, for a fixed W the restriction of c to Rep(Q,α) × {W}
defines a semi-invariant cW in SI(Q,α) of weight −〈·, β〉 ([10, Lemma 1.4]). If
V, V ′ ∈ Rep(Q,α) and V ∼= V ′, then V and V ′ are in the same GL(Q,α)-orbit,
and cV and cV

′
are equal up to a constant scalar. Semi-invariants of the types cV

and cW are well-defined up to a scalar. These semi-invariants have the following
properties.

Lemma 1. Suppose that V, V ′, V ′′ and W,W ′,W ′′ are representations of Q such
that 〈d(V ), d(W )〉 = 0, and that there are exact sequences

0→ V ′ → V → V ′′ → 0, 0→W ′ →W →W ′′ → 0.

a) If 〈d(V ′), d(W )〉 < 0, then cV (W ) = 0;
b) If 〈d(V ′), d(W )〉 = 0, then cV (W ) = cV

′
(W )cV

′′
(W );

c) If 〈d(V ), d(W ′)〉 > 0, then cV (W ) = 0;
d) If 〈d(V ), d(W ′)〉 = 0, then cV (W ) = cV (W ′)cV (W ′′).
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Proof. Consider the following commutative diagram with exact columns:

0 0
↓ ↓⊕

x∈Q0

Hom(V ′′(x),W (x))
dV
′′

W−−→
⊕
a∈Q1

Hom(V ′′(ta),W (ha))

↓ ↓⊕
x∈Q0

Hom(V (x),W (x))
dVW−−→

⊕
a∈Q1

Hom(V (ta),W (ha))

↓ ↓⊕
x∈Q0

Hom(V ′(x),W (x))
dV
′

W−−→
⊕
a∈Q1

Hom(V ′(ta),W (ha))

↓ ↓
0 0

If 〈d(V ′), d(W )〉 = 0, then dV
′

W , dVW and dV
′′

W are all represented by square matrices.
It follows that cV (W ) = cV

′
(W )cV

′′
(W ). So b) follows and d) goes similarly. If

〈d(V ′), d(W )〉 < 0, then dV
′

W cannot be surjective, hence dVW is not surjective. Now
a) follows and c) goes similarly.

Our main result is that the semi-invariants of type cV (resp. cW ) span all the
weight spaces in the rings SI(Q,α).

Theorem 1. Let Q be a quiver without oriented cycles and let β be a dimension
vector. The ring of semi-invariants SI(Q, β) is a K-linear span of semi-invariants
cV with 〈d(V ), β〉 = 0. The analogous result is true for the semi-invariants cW .

After this paper was submitted we learned about the paper [12] where among
other things the authors give another proof of Theorem 1 under the assumption
that the characteristic of K is zero.

We will prove Theorem 1 in Section 4.

Remark 1. If V = V1 ⊕ V2 is decomposable, then by Lemma 1 we have cV = 0 if
〈d(V1), β〉 6= 0, and cV = cV1cV2 if 〈d(V1), β〉 = 0.

The algebra SI(Q, β) is generated by all cV where V is indecomposable. Gener-
ators of SI(Q, β) therefore can be found in the degrees 〈α, ·〉 such that a general
representation of dimension α is indecomposable. By [5] this is equivalent to α
being a Schur root.

Remark 2. If Rep(Q, β) has a dense GL(Q, β)-orbit, then Schofield showed in [10]
that the invariants of type cV with V indecomposable generate SI(Q, β) (which is
a polynomial ring in this case).

Theorem 1 has the following remarkable consequence.

Corollary 1 (Reciprocity Property). Let α, β be two dimension vectors for the
quiver Q. Assume that 〈α, β〉 = 0. Then

dimK SI(Q, β)〈α,·〉 = dimK SI(Q,α)−〈·,β〉.

Proof. Let V1, . . . , Vs be the modules of dimension α such that cV1 , . . . , cVs form a
basis of SI(Q, β)〈α,·〉. These are linearly independent polynomials on Rep(Q, β) so
there exist s representationsW1, . . . ,Ws in Rep(Q, β) such that det(cVi(Wj))1≤i,j≤s
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is not zero. But cVi(Wj) = cWj (Vi) and this means that the semi-invariants
cW1 , . . . , cWs are linearly independent. This proves that

dimK SI(Q, β)〈α,·〉 ≤ dimK SI(Q,α)−〈·,β〉.

The other inequality is proven in exactly the same way.

In the remainder of this section we investigate the consequences of Theorem 1.
First we recall the main results of [11]. They can be summarized as follows.

We say that for two dimension vectors α, β the space HomQ(α, β) (respectively
ExtQ(α, β)) vanishes generically if and only if for general representations V,W of
dimensions α, β respectively we have HomQ(V,W ) = 0 (resp. ExtQ(V,W ) = 0). We
also write α ↪→ β if a general representation of dimension β has a subrepresentation
of dimension α.

Theorem 2 (Schofield). Let α and β be two dimension vectors for the quiver Q.
a) ExtQ(α, β) vanishes generically if and only if α ↪→ α+ β,
b) ExtQ(α, β) does not vanish generically if and only if β′ ↪→β and 〈α, β−β′〉<0

for some dimension vector β′.

Part a) is proven in Section 3 of [11], and part b) is proven in Section 5.

Remark 3. Suppose that V and W are general modules of dimension α and β
respectively, such that 〈α, β〉 = 0. The condition in b) is equivalent to ∃β′β′ ↪→ β
such that 〈α, β′〉 > 0. If cV (W ) = 0, then W must have a submodule W ′ such that
〈α, d(W ′)〉 > 0. This means that the converse of Lemma 1.c) is true for general V
and W .

Theorem 3. Let Q be a quiver without oriented cycles and let β be a dimension
vector. The semigroup Σ(Q, β) is the set of all σ ∈ Γ such that σ(β) = 0 and
σ(β′) ≤ 0 for all β′ such that β′ ↪→ β. Thus this condition is provided by one
linear homogeneous equality and finitely many linear homogeneous inequalities. In
particular the set Σ(Q, β) is saturated in the lattice Γ.

Proof. Suppose that σ ∈ Γ?. We can write σ = 〈α, ·〉 with α ∈ Γ.
We will first assume that α is a dimension vector, i.e., α(x) ≥ 0 for all x ∈ Q0.

It follows from Theorem 1 that SI(Q, β)〈α,·〉 is non-zero if and only if there exists
a representation V of dimension α such that cV is not zero, which is equivalent to
σ(β) = 〈α, β〉 = 0 and ExtQ(α, β) vanishing generically. By part b) of Theorem
2, ExtQ(α, β) vanishes generically if and only if for all β′ such that β′ ↪→ β we
have 〈α, β − β′〉 ≥ 0. This means that for all β′ such that β′ ↪→ β we have
σ(β′) = 〈α, β′〉 ≤ 0. We conclude that SI(Q, β)σ 6= 0 if and only if σ(β) = 0 and
σ(β′) ≤ 0 for all β′ ↪→ β.

If α is not a dimension vector, then SI(Q, β)nσ = 0 for all integers n > 0. Suppose
that W ∈ Rep(Q, β). From [6] it follows that either σ(d(W )) 6= 0 or there exists a
submodule W ′ of W such that σ(d(W ′)) > 0. If W is in general position, then we
obtain σ(β) 6= 0 or σ(β′) > 0 for some β′ ↪→ β (see also Remark 5).

Remark 4. Schofield in [11] gives an algorithm allowing one to determine the set
of inequalities in Theorem 3 inductively. This algorithm is not very efficient.

Remark 5. A module W ∈ Rep(Q, β) is called σ-stable if and only if there exist an
n > 0 and an f ∈ SI(Q, β)nσ such that f(W ) 6= 0. King proved in [6] that a module
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W ∈ Rep(Q, β) is σ-stable if and only if σ(W ′) ≤ 0 for all submodules W ′ of W .
Applied to a general representation W of dimension β this gives us the equivalence:

∃n > 0 SI(Q, β)nσ 6= 0⇔ σ(β) = 0 and ∀β′ β′ ↪→ β we have σ(β′) ≤ 0.

This shows that the saturation of Σ(Q, β) is given by linear inequalities but it does
not show that Σ(Q, β) is saturated.

Remark 6. In Theorem 3, instead of considering all β′ with β′ ↪→ β we only need to
consider those β′ such that the general representation of dimension β′ is indecom-
posable, which is equivalent to β′ being a Schur root. Still, the set of inequalities
obtained in this way may not be a minimal set of inequalities as we will see in the
next example.

Example 1. Let Q be the quiver

1
↓

4 → 5 ← 2
↑
3

and let β be the dimension vector

1
1 2 1

1
.

For a general representation V of Q with dimension vector β, the dimension vectors
of indecomposable submodules are:

0
1 2 1

1

1
1 2 0

1

1
1 2 1

0

1
0 2 1

1

1
0 1 0

0

0
0 1 1

0

0
0 1 0

1

0
1 1 0

0

0
0 1 0

0

Let σ be the weight given by σ(α) =
∑5
i=1 aiα(i), in other words

σ =
a1

a4 a5 a2

a3

.

We investigate when SI(Q, β)σ 6= 0. First of all we must have σ(β) = 0, so a1 +
a2 + a3 + a4 + 2a5 = 0. In particular a1 + a2 + a3 + a4 must be even. The
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SEMI-INVARIANTS OF QUIVERS 473

indecomposable submodules listed above correspond to the inequalities (using a5 =
−(a1 + a2 + a3 + a4)/2):

a1 ≥ 0, a2 ≥ 0, a3 ≥ 0, a4 ≥ 0,
a1 ≤ a2 + a3 + a4, a2 ≤ a1 + a3 + a4, a3 ≤ a1 + a2 + a4, a4 ≤ a1 + a2 + a3,

a1 + a2 + a3 + a4 ≥ 0.

(2)

The last inequality is redundant.
In the next section we will see how semi-invariants can be interpreted in terms

of tensor products of modules of the general linear group. This particular example
shows that for a 2-dimensional vector space U , the tensor product of symmetric
powers Sa1(U)⊗ Sa2(U)⊗ Sa3(U)⊗ Sa4(U) contains a non-trivial SL(U)-invariant
subspace if and only if a1 + a2 + a3 + a4 is even and the inequalities (2) hold. In
this case, the inequalities are obvious from the Clebsch-Gordan formula.

3. Application to Littlewood-Richardson coefficients

Let us apply Theorem 3 in the following special case. Let us define the quiver
Q = Tn,n,n as follows:

x1 → x2 → . . .→ xn−1 → u ← yn−1 ← . . .← y2 ← y1

↑
zn−1

↑
...
↑
z2

↑
z1

Let us choose the dimension vector β(xi) = β(yi) = β(zi) = i for i = 1, . . . , n− 1,
β(u) = n. The following proposition is a direct application of Cauchy’s formula
and is a standard calculation in representation theory.

Proposition 1. The weight space SI(Tn,n,n, β)σ is isomorphic to the space of
SL(U)-invariants in the triple tensor product Sλ(U) ⊗ Sµ(U) ⊗ Sν(U) of Schur
functors on U , where U is the vector space of dimension n, and λ, µ, ν are parti-
tions whose conjugate partitions are given as follows:

λ′ = ((n− 1)σ(xn−1), (n− 2)σ(xn−2), . . . , 1σ(x1)),
µ′ = ((n− 1)σ(yn−1), (n− 2)σ(yn−2), . . . , 1σ(y1)),
ν′ = ((n− 1)σ(zn−1), (n− 2)σ(zn−2), . . . , 1σ(z1)).

(3)

Here σ(q) is defined as σ(eq) where the dimension vector eq is given by eq(q) = 1
and eq(p) = 0 if p 6= q.

Proof. Let us denote by ai (resp. bi, ci) the arrow in Tn,n,n with tai = xi, hai = xi+1

(resp. tbi = yi, hbi = yi+1, tci = zi, hci = zi+1) for 1 ≤ i ≤ n − 1. The space
Rep(Tn,n,n, β) can be identified with⊕

1≤i≤n−1

(
Hom(V (xi), V (xi+1))⊕Hom(V (yi), V (yi+1))⊕Hom(V (zi), V (zi+1))

)
where we write xn = yn = zn = u.
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The Cauchy formula [4, §A.1] gives the decomposition of K[Rep(Tn,n,n, β)] as a
direct sum over the 3(n− 1)-tuples of partitions

((αi)1≤i≤n−1, (βi)1≤i≤n−1, (γi)1≤i≤n−1)

of the summands⊗
1≤i≤n−1

(
SαiV (xi)⊗ SαiV (xi+1)∗ ⊗ SβiV (yi)⊗ SβiV (yi+1)∗

⊗ SγiV (zi)⊗ SγiV (zi+1)∗
)
.

Let us denote H =
∏

1≤i≤n−1

(
SL(V (xi))×SL(V (yi))×SL(V (zi))

)
. Then it follows

from the Littlewood-Richardson Rule [4, §A.1] that the summand corresponding to
the 3(n− 1)-tuple

((αi)1≤i≤n−1, (βi)1≤i≤n−1, (γi)1≤i≤n−1)

contains an H-invariant if and only if we have for each i, 1 ≤ i ≤ n− 1,

(αi)′ = ((i)σ(xi), (i− 1)σ(xi−1), . . . , 1σ(x1)),

(βi)′ = ((i)σ(yi), (i− 1)σ(yi−1), . . . , 1σ(y1)),

(γi)′ = ((i)σ(zi), (i− 1)σ(zi−1), . . . , 1σ(z1))

for some non-negative numbers σ(xi), σ(yi), σ(zi). Moreover, if these conditions are
satisfied, then the space of H-invariants is isomorphic to

Sαn−1V (u)∗ ⊗ Sβn−1V (u)∗ ⊗ Sγn−1V (u)∗.

Therefore the space of SL(Tn,n,n, β)-semi-invariants can be identified with the space
of SL(V (u))-invariants in the above triple tensor product.

Corollary 2. The set of triples of partitions (λ, µ, ν) such that the space of SL(U)-
invariants in Sλ(U)⊗Sµ(U)⊗Sν(U) is non-zero, in the space of triples of weights
is given by a finite set of linear homogeneous inequalities in the parts of λ, µ, ν and
the condition that |λ|+ |µ|+ |ν| is divisible by n := dim U .

Proof. Let σ ∈ Γ be given by (3) and let σ(β) = 0. All components of σ are integers
only if |λ|+ |µ|+ |ν| is divisible by n, because

0 = σ(β) = nσ(u) +
n−1∑
i=1

i (σ(xi) + σ(yi) + σ(zi)) = nσ(u) + |λ|+ |µ|+ |ν|.

By Theorem 3 and Proposition 1, those (λ, µ, ν) for which SI(Tn,n,n, β)σ 6= 0
are given by σ(β) = 0 and a finite set of homogeneous linear inequalities in
σ(xi), σ(yi), σ(zi), 1 ≤ i ≤ n − 1. These inequalities can be written as inequal-
ities in the parts of λ, µ and ν.

4. The proof of Theorem 1

We define [x, y] to be the vector space with the basis formed by paths from x
to y. We assumed that Q has no oriented cycles, so the spaces [x, y] are finite
dimensional.

The indecomposable projective representations are in a bijection with Q0. The
indecomposable projective corresponding to x is defined by

Px(y) = [x, y], Px(a) = a ◦ · : [x, ta]→ [x, ha],
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where Px(a) is given by the composition p 7→ a◦p. We have HomQ(Px, V ) = V (x).
In particular HomQ(Px, Py) = [y, x].

We choose a numbering Q0 = {x1, . . . , xn} of vertices of Q such that for every
α ∈ Q1 with tα = xi, hα = xj , we have i < j. Let bi,j be the number of arrows
α ∈ Q1 with tα = xi, hα = xj . Let pi,j = dim[xi, xj ] be the number of paths p in
Q such that tp = xi, hp = xj .

The relations between the α(xj) and σ(xi) are as follows:

σ(xj) = α(xj)−
∑
i<j

bi,jα(xi),(4)

α(xj) = σ(xj) +
∑
i<j

pi,jσ(xi).(5)

We define the m-arrow quiver Θm as a quiver with two vertices x+ and x−, and
m arrows a1, . . . , am with tai = x−, hai = x+ for i = 1, . . . ,m. We define the
weight τ given by τ(x+) = 1, τ(x−) = −1. The dimension vector θ(n) is defined by
θ(n)(x+) = θ(n)(x−) = n.

The idea of the proof of Theorem 1 is to reduce the calculation to the weight
space SI(Θm, θ(n))τ . The method comes from Classical Invariant Theory with a
slight adjustment to accomodate the definition of semi-invariants cV .

Proof of Theorem 1. Let us fix Q, β and a weight σ. We proceed in three steps.
In the first step, we reduce the theorem to the case that Q is a quiver with exactly
one source x− and one sink x+, and σ(x−) = 1, σ(x+) = −1 and σ is zero on all
other vertices. In the second step we reduce to the case that there are no vertices
x with σ(x) = 0. The only case left is the quiver Θm with weight τ . In Step 3 we
will prove the theorem in this case.

Step 1. Construct a quiver Q(σ) as follows:

Q(σ)0 = Q0 ∪ x− ∪ x+,

Q(σ)1 = Q1 ∪Q− ∪Q+

where Q− consists of the set of arrows from x− to xi, with σ(xi) arrows going to
the vertex xi for which σ(xi) > 0 and no arrows going to other vertices. The set
Q+ consists of the set of arrows from xi to x+, with −σ(xi) arrows going from the
vertex xi for which σ(xi) < 0 and no arrows going from other vertices to x+.

Example 2. Let Q be the quiver

x1

↘
x3

↗
x2

.

Let σ = (1, 1,−2). Then the quiver Q(σ) is

x1

↗ ↘
x− x3 ⇒ x+

↘ ↗
x2

.
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We will write Q = Q(σ). Define the weight σ of Q by σ(x−) = 1, σ(xi) =
0, σ(x+) = −1. The dimension vector β = β(σ) is defined by β(xi) = β(xi),
β(x−) =

∑
{i|σ(xi)>0} σ(xi)β(xi), β(x+) =

∑
{i|σ(xi)<0}−σ(xi)β(xi). Suppose that

W ∈ Rep(Q, β). The matrices of all maps W (a) with a ∈ Q− form a square
matrix. Let D−(W ) be the determinant of this block matrix. Let D+(W ) be the
determinant of all W (a) with a ∈ Q+. Then the correspondence c→ D−cD+ gives
the isomorphism of weight spaces SI(Q, β)σ → SI(Q, β)σ.

Let α be the dimension vector of Q such that σ = 〈α, ·〉. Let V be a repre-
sentation of Q with dimension vector α and let cV be the corresponding non-zero
semi-invariant on SI(Q, β).

Proposition 2. The factor c in the decomposition cV = D−cD+ is of the form cV

for some V ∈ Rep(Q,α).

Proof. Notice that the weight of D− is equal to 〈γ−, ·〉 where

γ−(x−) = 1, γ−(xj) = γ−(x+) = 0.

Similarly, by (5), the weight of D+ equals 〈γ+, ·〉 where

γ+(x−) = 0, γ+(xj) = −
∑
i≤j

σ(xi)<0

pi,jσ(xi),

γ+(x+) = −1 +
∑
j

σ(xj)<0

∑
i≤j

σ(xi)<0

pi,jσ(xi)σ(xj).

It is easy to see that 〈γ−, β〉 = 〈γ+, β〉 = 0.
Let V ∈ Rep(Q,α). Then V has an obvious submodule V 1 = V |Q0\{x−}. We

have an exact sequence

0→ V 1 → V → V 2 → 0

with the dimension of V 2 equal to γ−.
Let M be the module defined by the exact sequence

0→ Px+

i→
⊕

b,hb=x+

Ptb →M → 0,

where the morphism i from Px+ to a copy Ptb maps the trivial path e(x+) to the
path b. The dimension vector of M is γ+, and cM is the determinant D+. Consider
the map ∑

b
hb=x+

V 1(b) :
⊕

b,hb=x+

V 1(tb)→ V 1(x+).

The dimension of the kernel is at least 1. Let (sb)b,hb=x+ with sb ∈ V 1(tb) be a
non-trivial element in the kernel. We can now define a map

⊕
b,hb=x+

Ptb → V 1

by sending the generator e(tb) ∈ Ptb(tb) to sb for all b. Because (sb)b,hb=x+ lies in
the kernel, this actually defines a morphism M → V 1. Let V 3 be the image of this
morphism.

Now V 3 is a submodule of V 1 and cV 1 6= 0. By Lemma 1 a) we have 〈d(V 3), β〉 ≥
0. We also have cM = D+ 6= 0. If we apply Lemma 1 a) to the kernel N of
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M → V 3, then we get 〈d(N), β〉 = 〈γ+,−d(V 3)〉 = −〈d(V 3), β〉 ≥ 0. We conclude
that 〈d(V 3), β〉 = 0. By Lemma 1 b) cV 3 divides the semi-invariant cM = D+.
Because D+ is an irreducible semi-invariant we must have cV 3 = D+, γ+ = dimV 3

and V 3 is isomorphic to M .
We have an exact sequence

0→ V 3 → V 1 → V 4 → 0.

Now it is clear by the multiplicative property that cV = cV 2cV 4cV 3 with the
first factor being proportional to D− and the last one to D+. Let us also define a
submodule V 5 = V 4 |{x+}, so we have an exact sequence

0→ V 5 → V 4 → V 6 → 0.

Note that V 6 has support within Q. The restriction of V 6 to Q will be denoted by
V . We will prove that the restriction of cV̂ to Rep(Q, β) is cV .

Extend W ∈ Rep(Q, β) to the module W of dimension β by putting W (x−) =⊕
a,ta=x−

W (ha), W (x+) =
⊕

b,hb=x+
W (tb), with the maps W (a) and W (b) be-

ing the components of the identity map. Define the canonical submodule W 1 =
W |{x+}. We have an exact sequence

0→W 1 →W →W 2 → 0.

Define the submodule W 3 = W 2 |Q̂\{x−} of W 2. Now we have an exact sequence

0→ W 3 →W 2 →W 4 → 0.

The representation W 3 has support within Q and its restriction to Q is just W .
We now have

cV (W ) = cV 4(W ) = cV 4(W 1)cV 4(W 3)cV 4(W 4) = cV 4(W 3)

because cV 4(W 1) and cV 4(W 4) are constant. Moreover,

cV 4(W 3) = cV 5(W 3)cV 6(W 3) = cV 6(W 3) = cV (W )

because cV 5(W 4) is constant. This concludes the proof of the proposition.

Step 2. Let Q, β, σ be as above. Let x ∈ Q0 be a vertex such that σ(x) = 0.
Let a1, . . . , as be the arrows in Q1 with hak = x (k = 1, . . . , s) and let b1, . . . , bt
be the arrows in Q1 with tbl = x (l = 1, . . . , t). Let Q be the quiver such that
Q0 = Q0 \ {x} and Q1 = (Q1 \ {a1, . . . , as, b1, . . . , bt}) ∪ {bak,l}1≤k≤s,1≤l≤t, where
t(bak,l) = tak, h(bak,l) = hbl. Let β, σ be the restrictions of β, σ to Q0 \ {x}.

The Fundamental Theorem of Invariant Theory (see [2] for a characteristic free
version) says that every semi-invariant from SI(Q, β)σ can be obtained from the
semi-invariants from SI(Q, β)σ by substituting the actual compositions blak for the
arrows of type bak,l. Assuming Theorem 1 for SI(Q, β)σ to be true, we need to show
that every semi-invariant cV from SI(Q, β)σ pulls back to a semi-invariant of type
cV . For a given representation V of Q of dimension α we define the representation
V = ind V as follows. We notice that the condition σ(x) = 0 means that we expect
dim V (x) =

∑s
k=1 dim V (tak).
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This means we put

V (y) =
{
V (y) if y 6= x,⊕s

k=1 V (tak) if y = x.

We define the linear maps V (a) as follows:

V (a) =

 V (a) if a 6= ak, bl,
i(ak) if a = ak,∑s
k=1 V (bak,l) if b = bl,

where i(ak) : V (tak)→
⊕s

k=1 V (tak) is the injection on the k-th summand.
Then it is easy to check directly from the definition of semi-invariants cV that

if the representation W = res W of dimension β is a restriction of a representation
W of Q of dimension β, then cV (W ) = cV (W ).

Notice that the functor ind V is the left adjoint of the obvious restriction functor
res : Rep(Q)→ Rep(Q), i.e., we have the natural isomorphisms

HomQ(ind V ,W ) = HomQ(V , res W )

which explains why cV (W ) and cV (W ) vanish simultaneously.

Step 3. It remains to deal directly with the weight space SI(Θm, θ(n))τ . Writing
the representation W of dimension θ(n) as an m-tuple of linear maps,

W (a1), . . . ,W (am) : W− →W+,

we can introduce the additional action of the group GL(m) acting on this space
by taking linear combinations of the linear maps W (a1), . . . ,W (am). Using the
Cauchy formula (in its characteristic free version, say from [1]) we see that the space
SI(Θm, θ(n))τ of semi-invariants can be identified with

∧nW−⊗∧nW ∗+⊗Dn(Km).
Here Dn denotes the n-th divided power. Since the divided power Dn(Km) is
generated as a GL(m)-module by its highest weight vector (which corresponds to the
semi-invariant detW (a1)) and the set of semi-invariants of the form cV is preserved
by the action of GL(m), it is enough to express detW (a1) as the semi-invariant of
the form cV . Notice that τ = 〈α, ·〉 for the dimension vector α = (1,m−1). Taking
the module V to be the m-tuple of linear maps V (a1), . . . , V (am) : K → Km−1

where V (a1) = 0 and V (ai) is the embedding sending 1 to the i− 1’st basis vector,
for i = 2, . . . ,m, we check directly that cV = det W (a1). This concludes the proof
of Theorem 1.

We now will give another description for semi-invariants SI(Q, β)σ. Let Q =
Q(σ), β and σ be as in Step 1 of the proof of Theorem 1. We know that SI(Q, β)σ ∼=
SI(Q, β)σ. Let α be a dimension vector of Q such that 〈α, ·〉 = σ. Now SI(Q, β)σ is
generated by semi-invariants cV with d(V ) = α. In fact we only need to take those
cV where V lies in a Zariski dense set of Rep(Q,α). A general representation V of
dimension α has the following projective resolution:

0→ Px+

dV−→ Px− → V → 0

with dV ∈ HomQ(Px+ , Px−) = [x−, x+]. So dV can be seen as some linear combina-
tion

∑r
i=1 λipi where p1, . . . , pr are all paths from x+ to x−. For anyW ∈ Rep(Q, β)

we have the following exact sequence:

0→ HomQ(V ,W )→ HomQ(Px+ ,W )
d̃V−→ HomQ(Px− ,W )→ ExtQ(V ,W )→ 0.
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It is easy to see that det(d̃V ) = cV (W ) = cV (W ).
We have that

HomQ(Px+ ,W ) ∼= W x+ =
⊕

σ(xi)>0W (xi)σ(xi),

HomQ(Px− ,W ) ∼= W x− =
⊕

σ(xi)<0W (xi)σ(xi),

d̃V =
∑

i λiV (pi).

Let F be a function from the set of paths from x+ to x− to the set of non-negative
integers. For each such F we can define the semi-invariant IF as the coefficient of
λ
F (p1)
1 λ

F (p2)
2 . . . λ

F (pr)
r in det(d̃V ).

Corollary 3. The space of semi-invariants SI(Q, β)σ is spanned by semi-invariants
of the form IF .

A necessary condition for IF to be non-zero is∑
i

F (pi) =
∑

σ(xi)>0

σ(xi)β(xi) =
∑

σ(xi)<0

−σ(xi)β(xi).
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