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QUIVERS WITH POTENTIALS AND THEIR
REPRESENTATIONS I: MUTATIONS

HARM DERKSEN, JERZY WEYMAN, AND ANDREI ZELEVINSKY

ABSTRACT. We study quivers with relations given by non-commutative analogs of
Jacobian ideals in the complete path algebra. This framework allows us to give
a representation-theoretic interpretation of quiver mutations at arbitrary vertices.
This gives a far-reaching generalization of Bernstein-Gelfand-Ponomarev reflection
functors. The motivations for this work come from several sources: superpotentials
in physics, Calabi-Yau algebras, cluster algebras.
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1. INTRODUCTION

The main objects of study in this paper are quivers with potentials (QPs for short).
Roughly speaking, a QP is a quiver () together with an element S of the path algebra
of ) such that S is a linear combination of cyclic paths. We associate to S the two-
sided ideal J(S) in the path algebra generated by the (noncommutative) partial
derivatives of S with respect to the arrows of ). We refer to J(.5) as the Jacobian
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ideal, and to the quotient of the path algebra modulo J(S) as the Jacobian algebra.
They appeared in physicists’ work on superpotentials in the context of the Seiberg
duality in mirror symmetry (see e.g., [I7, 2, [6]). Since in some of their work the
superpotentials are required to satisfy some form of Serre duality, we prefer not to
use this terminology, and just refer to S as a potential; another reason for this is
that we are working with the completed path algebra, so our potentials are possibly
infinite linear combinations of cyclic paths. The Jacobian algebras also play an
important role in the recent work on Calabi-Yau algebras [4] 25 26| 27].

In this paper we introduce and study mutations for QPs and their (decorated)
representations. In the context of Calabi-Yau algebras, the mutations were discussed
in [26] but our approach is much more elementary and down-to-earth. Namely, we
develop the setup that directly extends to QPs the Bernstein-Gelfand-Ponomarev
reflection functors [3] and their “decorated” version [2§].

The original motivation for our study comes from the theory of cluster algebras
introduced and studied in a series of papers [18, [19] (1, 20]. In this paper, we deal only
with the underlying combinatorics of this theory embodied in skew-symmetrizable
integer matrices and their mutations. Furthermore, we restrict our attention to skew-
symmetric integer matrices. Such matrices can be encoded by quivers without loops
and oriented 2-cycles. Namely, a skew-symmetric integer n X n matrix B = (b;;)
corresponds to a quiver Q(B) with vertices 1,...,n, and b;; arrows from j to ¢
whenever b; ; > 0. For every vertex k, the mutation at k transforms B into another
skew-symmetric integer n x n matrix u,(B) = B = (b;;). The formula for b;; is
given below in (T4). It is well-known (see Proposition [[I] below) that the quiver

Q(B) can be obtained from @Q(B) by the following three-step procedure:

Step 1. For every incoming arrow a : 7 — k and every outgoing arrow b : k — i,
create a “composite” arrow [ba] : j — ¢; thus, whenever b;j, by ; > 0, we
create b; by ; new arrows from j to 7.

Step 2. Reverse all arrows at k; that is, replace each arrow a : j — k with a* : k — 5,
and b: k — ¢ with b* : 1 — k.

Step 3. Remove any maximal disjoint collection of oriented 2-cycles (that can appear
as a result of creating new arrows in Step 1).

In the case where k is a source or a sink of Q(B), the first and last steps of the
above procedure are not applicable, so Q(B) is obtained from @Q(B) by just reversing
all the arrows at k. In this situation, J.Bernstein, I. Gelfand, and V. Ponomarev [3]
introduced the reflection functor at k sending representations of a quiver Q(B) (with-
out relations) into representations of Q(B). A modification of these functors acting
on decorated representations was introduced in [28] to establish a link between clus-
ter algebras and quiver representations (the definition of decorated representations
for general QPs is given below in Section [I0).

The elementary approach of [28] has not been further pursued until now, giving
way to a more sophisticated approach via cluster categories and cluster-tilted alge-
bras developed in [7, 8, @, 10, 12] 13 14} 15] and many other publications. Most of
the results in these papers are for the quivers obtained by mutations from hereditary
algebras (i.e., quivers without oriented cycles and without relations). In this paper
we return to the more elementary point of view of [28] and propose an alternative
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approach (which is in fact more general, since we do not impose any restrictions
on quivers in question). In this approach, the mutations at arbitrary vertices (not
just sources or sinks) are defined for QPs and their decorated representations. The
construction for QPs is carried out in Section [Bl and for their representations in Sec-
tion IOl It turns out to be rather delicate and requires a lot of technical preparation.
The first two steps of the above mutation procedure extend to QPs in a relatively
straightforward way, but Step 3 presents a real challenge: we need to accompany
the removal of oriented 2-cycles from a quiver with a suitable modification of the
potential, leaving the corresponding Jacobian algebra unchanged. Our main device
in dealing with this difficulty is Theorem [4.6] which is the crucial technical result
of the paper. Roughly speaking, Theorem asserts that every potential S can be
transformed by an automorphism of the path algebra into the sum of two potentials
Siiv and Speq on the disjoint sets of arrows, where the trivial part S, is a linear
combination of cyclic 2-paths, while the reduced part S..q involves only cyclic d-paths
with d > 3. Furthermore, the Jacobian algebra of S..q is isomorphic to that of S.

Several comments on this result are in order. First, our arguments heavily de-
pend on the setup using completed path algebras, thus allowing potentials to involve
infinite sums of cyclic paths. Second, the reduction S + Siq is not given by a
canonical procedure. As a consequence, our construction of mutations for QPs and
their representations is not functorial in any obvious sense. On the positive side, we
prove that every mutation is a well-defined transformation on the right-equivalence
classes of QPs (and their representations), where, roughly speaking, two QPs are
right-equivalent if they can be obtained from each other by an automorphism of the
path algebra (for more precise definitions see Definitions and [10.2)).

Finally, it is important to keep in mind that, even with the help of Theorem [4.6]
in order to get rid of all oriented 2-cycles in the mutated QP, one needs to impose
some “genericity” conditions on the initial potential S. These conditions are studied
in Section [[ They are not very explicit in general, but we introduce an important
class or rigid QPs (see Definitions and [6.10) for which the absence of oriented
2-cycles after any sequence of QP mutation is guaranteed.

We now describe the contents of the paper in more detail. In Section[2lwe introduce
an algebraic setup for dealing with quivers and their path algebras. We fix a base field
K, and encode a quiver with the vertex set )y and the arrow set () by its vertex span
R = K% and arrow span A = K®'. Thus, R is a finite-dimensional commutative
K-algebra, and A is a finite-dimensional R-bimodule. We then introduce the path
algebra

R(A) = P A,
d=0
and, more importantly for our purposes, the complete path algebra
R((4)) = [ [ A%
d=0
here A? stands for the d-fold tensor power of A as an R-bimodule. We view R{(A))

as a topological algebra via the m-adic topology, where m is the two-sided ideal
generated by A.
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In Section [B we introduce some of our main objects of study: potentials and
their Jacobian ideals. It is natural to view potentials as elements of the trace space
R((A))/{R((A)), R{{(A))}, where {R((A)), R((A))} is the closure of the vector sub-
space in R((A)) spanned by all commutators. It is more convenient for us to define
a potential S as an element of the cyclic part of R((A)); for all practical purposes,
S can be replaced by a cyclically equivalent potential, that is, the one with the same
image in the trace space. To define the Jacobian ideal J(S) and derive its basic
properties, we develop the formalism of cyclic derivatives, in particular, establishing
“cyclic” versions of the Leibniz rule and the chain rule. The main result of Section
is Proposition B7] that asserts that any isomorphism ¢ of path algebras sends J(5)
to J(¢(S)). Note that cyclic derivatives for general non-commutative algebras were
introduced in [29], and the results we present can be easily deduced from those in
loc.cit. For the convenience of the reader, we present complete independent proofs.
Victor Ginzburg informed us that in the context of path algebras of quivers, cyclic
derivatives were introduced and studied in [5, 24], and that Proposition B.7 is a
consequence of the geometric interpretation of J(S) given in [25, Definition 5.1.1,
Lemma 5.1.3].

In Section @ we introduce quivers with potentials (QPs) and define the right-
equivalence relation on them, which plays an important role in the paper. We then
state and prove the key technical result of the paper: Splitting Theorem [£.0], already
discussed above. The proof is elementary but pretty involved; it uses in an essential
way the topology in a complete path algebra. In order not to interrupt the argument,
we move to the Appendix our treatment of the topological properties needed for the
proof of one of the technical lemmas.

In Section Bl we finally introduce the mutations of QPs. Using Theorem [4.6] we
prove that the mutation at an arbitrary vertex is a well-defined involution on the set
of right-equivalence classes of reduced QPs (Theorem [5.7]).

In Section [l we study some mutation invariants of QPs. In particular, we show
that mutations preserve the class of QPs with finite-dimensional Jacobian algebras
(Corollary [6.6). Another important property of QQPs preserved by mutations is rigid-
ity (Corollary [6.11]), which was already mentioned above. For the precise definition
of rigid QPs see Definitions and below; intuitively, a QP is rigid if its right-
equivalence class is invariant under infinitesimal deformations.

In Section [0, we introduce and study nondegenerate QPs, that is, those to which
one can apply an arbitrary sequence of mutations without creating oriented 2-cycles.
In Corollary [[.4] we show that nondegeneracy is guaranteed by non-vanishing of
countably many nonzero polynomial functions on the space of potentials. In par-
ticular, if the base field K is uncountable, a nondegenerate QP exists for every
underlying quiver.

Section 8 contains some examples of rigid and non-rigid potentials and some further
results illustrating the importance of rigidity. A simple but important Proposition 8.1
asserts that rigid QPs have no oriented 2-cycles. Combining this with the fact that
rigidity is preserved by mutations, we conclude that every rigid QP is nondegenerate.
Using a result by Keller-Reiten [27], we show in Example 7] that the class of rigid
QPs (as well as the class of QPs with finite-dimensional Jacobian algebras) is strictly
greater than the class of QPs mutation-equivalent to acyclic ones. On the other hand,
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Example exhibits an underlying quiver without oriented 2-cycles that does not
admit a rigid QP; thus, the class of nondegenerate QPs is strictly greater than the
class of rigid ones.

In Section [9 we consider quivers that are mutation-equivalent to a Dynkin quiver.
For every such underlying quiver, we compute explicitly the corresponding rigid QP
(Proposition [0.1). Comparing this result with the description of cluster-tilted alge-
bras obtained in [13], 9], we conclude in Corollary that in the case in question,
every cluster-tilted algebra can be identified with the Jacobian algebra of the cor-
responding rigid QP. Thus, Jacobian algebras can be viewed as generalizations of
cluster-tilted algebras.

In Section [[0] we introduce decorated representations of QPs (QP-representations,
for short) and their right-equivalence (Definitions [[0.1] and [[0.2]). We then present a
representation-theoretic extension of Splitting Theorem by defining the reduced
part of a QP-representation M (Definition [[0.4)) and proving that, up to right-
equivalence, it is determined by the right-equivalence class of M (Proposition [10.5]).
We use this result to introduce mutations of QP-representations and to prove a
representation-theoretic extension of Theorem .7 the mutation at every vertex is
an involution on the set of right-equivalence classes of reduced QP-representations
(Theorem T0.T3).

Some examples of QP-representations and their mutations are given in Section [Tl
All these examples treat quivers with three vertices. In particular, we describe the
effect of mutations on a special family of band representations coming from the theory
of string algebras [111, 21].

The concluding Section contains some open problems about QPs and their
representations that we find essential for better understanding of the theory.

In the forthcoming continuation of this paper, we plan to discuss applications of
QP-representations and their mutations to the structure of the corresponding cluster
algebras.

2. QUIVERS AND PATH ALGEBRAS

A quiver @ = (Qo, @1, h,t) consists of a pair of finite sets Qo (vertices) and @y
(arrows) supplied with two maps h : Q1 — Qo (head) and t : Q1 — Qo (tail). It
is represented as a directed graph with the set of vertices )y and directed edges
a : ta — ha for a € Q). Note that this definition allows the underlying graph to
have multiple edges and (multiple) loops.

We fix a field K, and associate to a quiver () two vector spaces R = K9 and
A = K@ consisting of K-valued functions on @, and @, respectively. We will
sometimes refer to R as the vertex span of (), and to A as the arrow span of (). The
space R is a commutative algebra under the pointwise multiplication of functions.
The space A is an R-bimodule, with the bimodule structure defined as follows: if
e€ Rand f € Athen (e- f)(a) =e(ha)f(a) and (f-e)(a) = f(a)e(ta) for all a € Q.

We denote by Q* the dual or opposite quiver Q* obtained by reversing the arrows
in @ (i.e., replacing @ = (Qo, Q1, h,t) with Q* = (Qo, Q1,t, h)). The corresponding
arrow span is naturally identified with the dual bimodule A* (the dual vector space
of A with the standard R-bimodule structure).
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For a given vertex set )y with the vertex span R, every finite-dimensional R-
bimodule B is the arrow span of some quiver on ()g. To see this, consider the
elements e; € R for i € Qo given by e;(j) = 0;; (the Kronecker delta symbol).
They form a basis of idempotents of R, hence every R-bimodule B has a direct sum

decomposition
B - @ Bi,j’
1,j€Q0
where B;; = e;Be; C B for every 4,7 € Q. If B is finite-dimensional, we can
identify the (finite) set of arrows () with a K-basis in B which is the union of bases
in all components B; ;; under this identification, every a € ()1 N B;; has h(a) =i
and t(a) = j.

It is convenient to represent an R-bimodule B by a matrix of vector spaces (B; ;)
whose rows and columns are labeled by vertices. In this model, the left (resp. right)
action of an element ¢ = ), ¢;e; € R is given by the left (resp. right) multiplication
by the diagonal matrix with diagonal entries ¢;. And the tensor product over R is
given by a usual matrix multiplication: if B =P, ; Bi; and C = €, ; C; ;, then

(B®rC)ij =D (Bix® Ck).
k

Returning to a quiver () with the arrow span A, for each nonnegative integer d,
let A¢ denote the R-bimodule

A= AQr A®R - ®R A,
a

with the convention A° = R.

Definition 2.1. The path algebra of @ is defined as the (graded) tensor algebra
R(A) = P A“.
d=0

For each 7,5 € Qo, the component R(A);; = e;R(A)e; is called the space of paths
from j to 1.

As above, we identify the set of arrows (); with some basis of A consisting of
homogeneous elements, that is, each a € ¢); belongs to some component A; ;. Then
for every d > 1, the products a; - - - a4 such that all a; belong to @1, and t(ay) =
h(apy1) for 1 < k < d, form a K-basis of A?. We call this basis the path basis of A?
associated to Q;. For d = 0, we call {e; | i € Qo} the path basis of A° = R. We
refer to the union of path bases for all d as the path basis of R(A). The elements of
the path basis will be sometimes referred to simply as paths. We depict a; - - - a4 as
a path of length d starting in the vertex t(aq) and ending in h(a;). Note that the
product (aj - --aq)(@geq - - aqrr) of two paths is 0 unless t(aq) = h(ags1), in which
case the product is given by concatenation of paths. This description implies the
following;:

(2.1) If 0 # p € AFe; and 0 # ¢ € e; A for some vertex i then pg # 0.
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Definition 2.2. The complete path algebra of () is defined as
R((A)) =] A“
d=0

Thus, the elements of R((A)) are (possibly infinite) K-linear combinations of the
elements of a path basis in R(A); and the multiplication in R{{A)) naturally extends
the multiplication in R(A).

Note that, if the quiver Q is acyclic (that is, has no oriented cycles), then A% = {0}
for d > 0, hence in this case R((A)) = R(A), and this algebra is finite-dimensional.

Example 2.3. Consider the quiver Q = (Qo, Q1) with Qo = {1} and Q1 = {a} with
a:1— 1. This is the loop quiver:
a C 1 .

In this case R = K9 = K, and A = K% = Ka. We have R(A) = Kla], and
R((A)) = K[[a]], the algebra of formal power series.

Let m = m(A) denote the (two-sided) ideal of R((A)) given by

(2.2) m=m(A4) = ﬁAd.

Thus the powers of m are given by

o0
m" =[] A
d=n

We view R((A)) as a topological K-algebra via the m-adic topology having the powers
of m as a basic system of open neighborhoods of 0. Thus, the closure of any subset
U C R((A)) is given by

(2.3) U={(U+m").
n=0
It is clear that R(A) is a dense subalgebra of R{({A)).

In dealing with R((A)), the following fact is quite useful: every (non-commutative)
formal power series over R in a finite number of variables can be evaluated at arbi-
trary elements of m to obtain a well-defined element of R{(A)). To illustrate, let us
show that m is the unique maximal two-sided ideal of R({{A)) having zero intersec-
tion with R = A°. Indeed, it is enough to show that any element x € R((A)) —m
generates an ideal having nonzero intersection with R. Let z = ¢ 4+ y with ¢ a
nonzero element of R, and y € m. Multiplying = on both sides by suitable elements
of R, we can assume that ¢ = e; for some ¢ € @, and e¢;y = ye; = y. But then
z=¢—y+y?—y>+--- is a well-defined element of R((A)), and we have zz = ¢,
proving our claim.

This characterization of m implies that it is invariant under any algebra automor-
phism ¢ of R({A)) such that ¢|g is the identity. Thus, ¢ is continuous, i.e., is an
automorphism of R((A)) as a topological algebra.
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The same argument shows that, more generally, if A and A’ are finite-dimensional
R-bimodules then any algebra homomorphism ¢ : R((A)) — R((A’)) such that
¢|r = id, sends m(A) into m(A’), hence is continuous. Thus, ¢ is uniquely determined
by its restriction to A = A, which is a R-bimodule homomorphism A — m(A4’) =
A @m(A)2. We write p|4 = (01, @), where o) : A — A" and p® : 4 — m(A’)?
are R-bimodule homomorphisms.

Proposition 2.4. Any pair (01, o) of R-bimodule homomorphisms o) : A — A’
and ) : A — m(A")? gives rise to a unique homomorphism of topological algebras
¢ : R({A)) = R{{A")) such that p|r =id, and |4 = (e, @). Furthermore, ¢ is
an isomorphism if and only if oY) is a R-bimodule isomorphism A — A’

Proof. The uniqueness of ¢ is clear. To show the existence, let Q1 = {a1,...,an} C
A = A! be the set of arrows in A. Writing an element z € R{(A)) as an infinite
K-linear combination of the elements of the corresponding path basis in R(A), we
express = as a (non-commutative) formal power series F'(aq,...,ay). Therefore,
a desired algebra homomorphism can be obtained by setting ¢(x) = F(o™M(a1) +
#D(a), .., ¢ (ay) + ¢ (an)).

If ¢ is an isomorphism then ¢ : A — A’ is clearly an isomorphism of R-
bimodules. To show the converse implication, we can identify A and A’ with the
help of ¢, and so assume that o) is the identity automorphism of A. Then the
(infinite) matrix that expresses ¢ as a K-linear map in the path basis of R{({A))
is lower-triangular with all the diagonal entries equal to 1 (we order the basis ele-
ments so that their degrees weakly increase). Clearly, such a matrix is invertible,
completing the proof of Proposition 2.4l O

Definition 2.5. Let ¢ be the automorphism of R((A)) corresponding to a pair
(1), p?) as in Proposition 24 If ¢ = 0, then we call ¢ a change of arrows. If o)
is the identity automorphism of A, we say that ¢ is a unitriangular automorphism;
furthermore, we say that ¢ is of depth d > 1, if ¢®(A) C m4+!.

The following property of unitriangular automorphisms is immediate from the
definitions:

(2.4) If o is an unitriangular automorphism of R({A)) of depth d,

n+d

then p(u) —u € m"™ for u € m".

3. POTENTIALS AND THEIR JACOBIAN IDEALS

In this section we introduce some of our main objects of study: potentials and
their Jacobian ideals in the complete path algebra R((A)) given by Definition
We fix a path basis in R(A); recall that it consists of the elements ¢; € R = A°
together with the products a; - - - a4 (paths) such that all a; belong to @1, and t(ay) =
h(ags1) for 1 < k < d. Then each space A? has a direct R-bimodule decomposition
Al = @i,jer Ag{j, where the component Agj is spanned by the paths a; - - - a4 with
h(ay) =i and t(aq) = j.
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Definition 3.1.
e For each d > 1, we define the cyclic part of A% as the sub-R-bimodule A% =

cyc

D.co, Afi- Thus, AL is the span of all paths a; - --aq with h(a1) = t(aa);
we call such paths cyclic.

e We define a closed vector subspace R((A))cy. € R((A)) by setting

R<<A>>Cyc = HAglym
d=1

and call the elements of R((A))cy potentials.
e For every £ € A*, we define the cyclic derivative O as the continuous K-linear
map R((A))cye = R((A)) acting on paths by

d
(31) 8§(a1 cee ad) = Z £(ak)ak+1 Qg cc c Ap—1-
k=1

e For every potential S, we define its Jacobian ideal J(S) as the closure of the
(two-sided) ideal in R((A)) generated by the elements 0¢(S5) for all £ € A*
(see (Z3)); clearly, J(S) is a two-sided ideal in R((A)).

e We call the quotient R((A))/J(S) the Jacobian algebra of S, and denote it
by P(Q,S) or P(A,S).

An easy check shows that a cyclic derivative 0 : R((A))cye — R((A)) does not de-
pend on the choice of a path basis. Furthermore, cyclic derivatives do not distinguish
between the potentials that are equivalent in the following sense.

Definition 3.2. Two potentials S and S are cyclically equivalent if S— S’ lies in the
closure of the span of all elements of the form a; ---aq — as - - - aga;, where ay - - - aq
is a cyclic path.

The following proposition is immediate from (B.1]).

Proposition 3.3. If two potentials S and S" are cyclically equivalent, then 0¢(S) =
0¢(S") for all € € A*, hence J(S) = J(S') and P(A,S) =P(A,S5).

It is easy to see that the definition of cyclical equivalence does not depend on the
choice of a path basis. In fact, it can be given in more invariant terms as follows.

Definition 3.4. For any topological K-algebra U, its trace space Tr(U) is defined as
Tr(U) = U/{U,U}, where {U, U} is the closure of the vector subspace in U spanned
by all commutators. We denote by m = my : U — Tr(U) the canonical projection.

The following proposition is a direct consequence of the definitions.

Proposition 3.5. Two potentials S and S’ are cyclically equivalent if and only if
Trian (S) = mTryan(S"). Thus, the Jacobian ideal and the Jacobian algebra of a
potential S depend only on the image of S in Tr(R((A))).

Recall that we identify the set of arrows () with a K-basisin A = A'. For a € Q,,
we will use the notation 9, for the cyclic derivative J,+, where Q7 = {a* | a € @1} is
the dual basis of Q1 in A*.
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Example 3.6. Consider the quiver Q = (Qo, Q1) with Qo = {1,2} and Q1 = {a, b},
wherea:1 —2and b:2 — 1:

1 —=2

b

The vertex and arrow spans of @ are given by R = K% = Ke; @ Key, and A =
K% = Ka @ Kb. The paths in R((A)) are e, e; and all products of the generators
a and b in which the factors a and b alternate. The potentials are (possibly infinite)
linear combinations of the elements (ab)” and (ba)” for all n > 1. Using (3.1), we
obtain

Da((ab)™) = 0,((ba)™) = nb(ab)"™",  Oy((ab)™) = Op((ba)™) = na(ba)"™' (n >1).

Up to cyclical equivalence, every potential can be written in the form
Zan(ab)" (o, € K).
n=1

Returning to the general theory, it is clear that every algebra homomorphism
¢ R{(A)) = R((A))
such that ¢|g = id, sends potentials to potentials.

Proposition 3.7. Every algebra isomorphism

v R{(4)) = R((A))
such that p|r = id, sends J(S) onto J(p(S)), inducing an isomorphism of Jacobian
algebras P(A, S) = P(A', ¢(9)).

Proof. We start by developing some “differential calculus” for cyclic derivatives. We
need a few pieces of notation. We set

R{(ANBR{(A) = ] (A%® A%
d,e>0

(the tensor product on the right is over the base field K'), and view this space as a
topological vector space with a basic system of open neighborhoods of 0 formed by

the sets [, »,(A‘®A°) for all n > 0; thus, R(A)®R(A) is dense in R{{A))DR((A)).
Now, for every £ € A*, we define a continuous K-linear map
Ag s R((A)) = R((A)BR((4))
by setting Ag(e) =0 for e € R = A%, and
d
(3.2) Ae(ar--ag) =Y &(ar)ar- ey @ g -+ ag
k=1
for any path a; - - - a4 of length d > 1. Note that A¢ does not depend on the choice of
a path basis. We will use the same convention as for cyclic derivatives: for a € @)y,
we write A, instead of A,«. For instance, in the situation of Example B.6, we have
Ag((ab)") = (ab)F T @b(ab)" ™, Ay((ab)") = (ab)*a @ (ab)"*.

k=1 k=1
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Next, we denote by (f, g) — fOg a continuous K-bilinear map (R{{A))@R({A)))x
R((A)) — R((A)) given by

(3.3) (u®v)dg = vgu
for u,v € R(A). We are now ready to state the Leibniz rule.

Lemma 3.8 (Cyclic Leibniz rule). Let f € R((A)):; and g € R{(A));; for some
vertices i and j. Then for every & € A*, we have

(3.4) 9e(fg9) = Ae(f)Bg + Ac(g)Bf.
More generally, for any finite sequence of vertices iy, ..., 1i4,14+1 = t1 and for any
fi, ... fa such that fi € R((A))i,.i.,., we have
d
(3.5) Oc(fie-fa) = Ae(f)D(fawr -~ fafi - far).
k=1

Proof. 1t is enough to check (3.4)) in the case where f = a;---agand g = agi1 - Ggas
are two paths such that t(aq) = h(ags1) and t(aqes) = h(ay). Using (B.]), we obtain

d+s

85(fg> = Zg(ak>ak+1 cc Qs Qg1
k=1

Comparing this expression with (3.2)) and (3.3]), we see that the part of the last sum
where k runs from 1 to d (resp. from d+ 1 to d + s) is equal to A¢(f)Og (resp. to
A¢(g)Of), proving ([34). The identity (3.5]) follows from (B3:4) by induction on d. O

Lemma 3.9 (Cyclic chain rule). Suppose that ¢ : R({A)) — R{(A")) is an algebra
homomorphism as in Proposition[2.4 Then, for every potential S € R((A)))cye and
& e A, we have:

(3.6) %e(0(5)) = Y Aelp(a))Dp(u(S))-

a1

Proof. 1t suffices to treat the case where S = a;---a4 is a cyclic path. Applying

B5) and (B.0]), we obtain
De((5)) = D Ael(ar)Dp(arss - - agar - - ap-1))

=D Aelp@)Do( Y arr---agar - ag-)

acQ1 k:ap=a
= Y Aelp(a))Bp(a(9)),
ac@Q1
as desired. 0

Now we are ready to prove Proposition B.7 By Lemma B.9] for every £ € A™*, the
element O¢(¢(S)) lies in the ideal generated by the elements ¢(0,(95)) for a € @y,
hence, it lies in ¢(J(S)). Thus, we have the inclusion

J(p(9)) € v(J(9)).
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We can also apply this to the inverse isomorphism ¢~ and the potential ¢(.5):

J(8) = J(@ ((9) € o7 (J((9))-
Applying ¢ to both sides yields

p(J(S)) € J(p(9)),
completing the proof. O

4. QUIVERS WITH POTENTIALS
We now introduce our main objects of study.

Definition 4.1. Suppose () is a quiver with the arrow span A, and S € R((A))cyc
is a potential. We say that a pair (Q,S) (or (A4,S)) is a quiver with potential (QP
for short) if it satisfies the following two conditions:

(4.1) The quiver ) has no loops, i.e., A;; =0 for all i € Q.

(4.2) No two cyclically equivalent cyclic paths appear in the decomposition of S.

In view of (1), every potential S belongs to m(A)?; and condition ([#2]) excludes,
for instance, any non-zero potential S cyclically equivalent to 0.

Definition 4.2. Let (A,S) and (A’,S") be QPs on the same vertex set Q). By
a right-equivalence between (A,S) and (A’,S’) we mean an algebra isomorphism
¢ : R((A)) — R((A")) such that p|gr = id, and ¢(5) is cyclically equivalent to S’
(see Definition 3.2]).

In view of Proposition 3.5, any algebra homomorphism R{{A)) — R((A’)) such
that ¢|r = id, sends cyclically equivalent potentials to cyclically equivalent ones. It
follows that right-equivalences of QPs have the expected properties: the composition
of two right-equivalences, as well as the inverse of a right-equivalence, is again a
right-equivalence. Note also that an isomorphism ¢ : R({A)) — R((A’)) induces
an isomorphism of R-bimodules A and A’ (cf. Proposition 2.4)), so in dealing with
right-equivalent QPs we can assume without loss of generality that A = A’.

In view of Propositions B.3] and B.7], any right-equivalence of QPs (A, 5) = (A",5")
induces an isomorphism of the Jacobian ideals J(S) = J(S’) and of the Jacobian
algebras P(A,S) = P(A",S").

For every two QPs (A,S) and (A’,S") (on the same set of vertices (y), we can
form their direct sum (A, S) @ (A",5") = (A A", S+ 5); it is well-defined since
both complete path algebras R((A)) and R((A’)) have canonical embeddings into
R({{(A @ A")) as closed R-subalgebras.

We start our analysis of QPs with the case S € A% In this case, J(S) is the
closure of the ideal generated by the subspace

(4.3) 0S = {0:(S) | € € A"} C A.

Definition 4.3. We say that a QP (A4, S5) is trivial if S € A?, and S = A, or,
equivalently, P(A,S) = R.

The following description of trivial QPs is seen by standard linear algebra.
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Proposition 4.4. A QP (A, S) with S € A? is trivial if and only if the set of arrows
Q1 consists of 2N distinct arrows aq, by, ...,ayn,by such that each apby is a cyclic
2-path, and there is a change of arrows ¢ (see Definition [2.1) such that ¢(S) is
cyclically equivalent to a1by + -+ - 4+ anby.

Returning to general QPs, we now show that taking direct sums with trivial ones
does not affect the Jacobian algebra.

Proposition 4.5. If (A,S) is an arbitrary QP, and (C,T) is a trivial one, then
the canonical embedding R{{A)) — R((A® C)) induces an isomorphism of Jacobian
algebras P(A,S) - P(Aa C,S+1T).

Proof. Let L denote the closure of the two-sided ideal in R{{A & C)) generated by
C'; thus, L is the set of all (possibly infinite) linear combinations of paths, each of
which contains at least one arrow from C. The definitions readily imply that

R{{A® C)) = R{(A)) & L,
. JS+T)=J(S)® L
(in the last equality, J(S) is understood as the Jacobian ideal of S in R((A))).
Therefore,
PAeC,S+T)=R{(AC))/J(S+T)=(R((A)® L)/(J(S)® L)
= R((A))/J(S) =P(4,5),
as desired. 0J

For an arbitrary QP (A4,5), we denote by S? € A? the degree 2 homogeneous
component of S. We call (4,9) reduced if S® = 0, ie., S € m(A)>. We define
the trivial and reduced arrow spans of (A, S) as the finite-dimensional R-bimodules
given by

(4.4) Apiv = Auiv(S) = 08®, Apeq = Area(S) = A/0SP
(see ([A.3)).

The following statement will play a crucial role in later sections.

Theorem 4.6 (Splitting Theorem). For every QP (A,S) with the trivial arrow
span Agyiy and the reduced arrow span A.eq, there exist a trivial QP (Agyiv, Striv)
and a reduced QP (Ared, Srea) such that (A,S) is right-equivalent to the direct sum
(Agriv, Striv) D (Ared, Sred)- Furthermore, the right-equivalence class of each of the QPs
(Atriv, Striv) and (Ared, Srea) s determined by the right-equivalence class of (A, S).

Let us first prove the existence of a desired right-equivalence
(45) (A7 S) = (Atriw Striv) ©® (Ared7 Sred)-

There is nothing to prove if (A, S) is reduced, so let us assume that S = 0. Using
Proposition [£.4] and replacing S if necessary by a cyclically equivalent potential, we
can assume that S is of the form

N
(46) S = (akbk + apug + 'Ukbk) + Sl,
k=1
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where each agby, is a cyclic 2-path, the arrows aq, by, ..., ay, by form a basis of Ay,
the elements u;, and vy, belong to m?, and the potential S’ € m? is a linear combination
of cyclic paths containing none of the arrows a; or by. The existence of a right-
equivalence (.5]) becomes a consequence of the following lemma.

Lemma 4.7. For every potential S of the form (LG), there exists a unitriangular
automorphism ¢ of R((A)) such that ©(S) is cyclically equivalent to a potential of
the form (A6) with u, = vy =0 for all k.

We say that a potential S is d-split if it is of the form (&6) with uy, v, € mé+! for
all k. To prove Lemma (.7 we first show the following.

Lemma 4.8. Suppose a potential S is d-split for some d > 1. There exists a unitri-
angular automorphism ¢ of R({A)) having depth d and such that ©(S) is cyclically
equivalent to a 2d-split potential S with p(S) — S € m?d+2,

Proof. Let us write S in the form (&6) with ug, v, € mé+1. Let ¢ be the unitriangular
automorphism of R((A)) acting on arrows as follows:

plar) = ar, — vy, @(br) = by —wg, @(c) =c (c€ Q1 —{ar,by,...,an,bn}).
Then ¢ is of depth d, so by (2.4]), for each k, we have

o(ur) = u, + u;, o(vk) = v + Ul,c (u;m U,g c m2d+1),

Therefore, we obtain

0(S) = ((ar — k) (b — ug) + (ar — ve) (up + ) + (v + 0}) (b — up)) + S’
k
= (axbi + apuj, + vpby) + 51 + S,
k

where
S) = — Z(vkuk + vkuﬁc + v;uk) S m2d+2.
k
In view of Definition 3.2, S; is cyclically equivalent to a potential of the form
Soplagul + vibg) + 87, where uf, vy € m*"*! and S” is a linear combination of
cyclic paths containing none of the a; or bg. Furthermore, we have

Sp— 85" — Z(akug + viby) € m?42,
K

We see that the desired potential S can be chosen as
S =" (axb + ax(uj, +uf) + (v, + vi)b) + S+ 5",
k
completing the proof of Lemma [£.8] O

Proof of Lemma[{.7]. Starting with a potential S of the form (4.6]) and using repeat-
edly Lemma [£.8) we construct a sequence of potentials S7,Ss, ..., and a sequence of
unitriangular automorphisms @1, @9, ..., with the following properties:

(2) S, is 29~ L-split.

(3) g is of depth 2471,
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(4) pq(Sq) is cyclically equivalent to Syi1, and pg(Sy) — Sqy1 € m2'+2,
By property (3), setting

(4.7) p = lm popn_1---p1,

we obtain a well defined unitriangular automorphism ¢ of R((A)); indeed, in view of
24), for any u € R((A)), if we write @ppn_1 - @1 (u) as S50, ul? with ulf) € A%,
then each homogeneous component ul? stabilizes as n — oco.

We claim that this automorphism ¢ satisfies the required properties in Lemma [4.7]
To see this, for d > 1, denote Cyq = ©4(Sq) — Sat1- By (4), Cq € {R((A)), R((A))} N
m2'+2 (recall from Definition B4 that {R((A)), R({A))} denotes the closure of the
vector subspace in R((A)) spanned by all commutators). Using (1), it is easy to see
that

PnPn—1-""" 901(5) = Sn+1 + Z PnPn—1""" de-i—l(cd)
d=1

for every n > 1; passing to the limit as n — oo yields

p(8) = lim S, + (D (a-21) " (Ca))

(the convergence of the series on the right is clear since any automorphism of R{({A))
preserves the powers of m). We conclude that ¢(S) is cyclically equivalent to
lim,, o S,. In view of (2), the latter element is of the form (46 with uy = vy =0
for all k. This completes the proofs of Lemma [A.7] and of the existence of a right-
equivalence (£.0). O

The above argument makes it clear that the right-equivalence class of (Agiv, Striv)
is determined by the right-equivalence class of (A,S) . To prove Theorem (0] it
remains to show that the same is true for (A;eq, Sred). Changing notation a little bit,
we need to prove the following.

Proposition 4.9. Let (A, S) and (A, S’) be reduced QPs, and (C,T) a trivial QP.
If (Ae C,S+T) is right-equivalent to (A® C,S"+T') then (A, S) is right-equivalent
to (A, S").

We deduce Proposition from the following result of independent interest.

Proposition 4.10. Let (A, S) and (A, S’) be reduced QPs such that S'— S € J(S)?.
Then we have:

(1) J(S") = J(9).

(2) (A,S) is right-equivalent to (A, S"). More precisely, there exists an algebra

automorphism ¢ of R((A)) such that o(S) is cyclically equivalent to S’, and
o(u) —u e J(S) for allu € R((A)).

Proof. (1) Since (A, S) is reduced, we have J(S) C m?. As an easy consequence of
the cyclic Leibniz rule (B.4]), we see that

9e(J(5)?)eye € MJ(S) + J(S)m
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for any £ € A*. It follows that
(4.8) 0eS" — S e mJ(S) + J(S)m,
implying that J(S") C J(S).
To show the reverse inclusion, note that (48] also implies that
J(S) C J(S") + (mJ(S) + J(S)m).
Applying the same inclusion to each of the terms J(S) on the right, we obtain
J(S) C J(S") + (m*J(S) + mJ(S)m + J(S)m?).

Continuing in the same way, we get

J(S) C J(S) + Y mFI(S)m"F C J(S) +m" 2
k=0

for any n > 1. Remembering the definition of topology in R((A)) (see (23])) and the
fact that J(S") is closed, we conclude that J(S) C J(S’), finishing the proof of part
(1) of Proposition 410

(2) Let Q1 = {ai,...,an} be the set of arrows (that is, a basis of A). Then
a unitriangular automorphism ¢ of R((A)) is specified by a N-tuple of elements
bi,...,by € m? such that

Lemma 4.11. Let (A, S) be a reduced QP, and let ¢ be a unitriangular automor-
phism of R{{A)) given by ([A9). Then the potential p(S) — S — Zszl b0, S is
cyclically equivalent to an element of mI?, where I is the closure of the ideal in
R((A)) generated by by, ..., by.

Proof. First consider the case where S = ay, - - - ay, is a cyclic path of length d > 3.
Then ¢(S) = (ak, +0bk,) - - - (a, +bx,). Expanding this product, we see that the term
that contains no factors by, is equal to S, while the sum of the terms that contain ex-
actly one factor by, is easily seen to be cyclically equivalent to Z;ngzl br0,, S (cf.(3.1)),
and the rest of the terms are cyclically equivalent to elements of S0, m(m?='N1)by.

Writing a general potential S € m3 as a linear combination of cyclic paths,we see
that ¢(5) — S5 — fovzl bi0,, S is cyclically equivalent to Zivzl ciby., where each ¢, is
of the form

N 00
_ (d)
(=1 d=3

with c,(;? e m 1N I. Since I is closed, each ¢; is a well-defined element of mI,
implying the assertion of Lemma FTT] O

We will also need one more lemma whose proof will be given in Section [I3l

Lemma 4.12. Let I be a closed ideal of R{({A)), and J be the closure of an ideal
generated by finitely many elements f1, fa,..., fn, which are bi-homogeneous with
respect to the vertex bigrading. Then every potential belonging to the ideal I.J is
cyclically equivalent to an element of the form Zsz1 by fr, where all by belong to 1.
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To prove part (2) of Proposition .10, we construct a sequence of N-tuples
(bin, -, bvn) (n>1)

of elements of m? and the corresponding unitriangular automorphisms ¢, of R{{A))
(so that ¢, (ax) = ax + by, for k' =1,..., N) such that, for all n > 1, we have

(1) by, em™ N J(S) for k=1,...,N.
(2) S’ is cyclically equivalent to @gp; -« - @n_1(S + Zsz1 bin 0y, S) (with the con-
vention that ¢q is the identity automorphism).

We proceed by induction on n. In the basic case n = 1, the existence of an
N-tuple (b1, ...,bn1) with desired properties follows from Lemma applied to
I=J=J(S) and f = 9,,S (note that J(S) C m?, since (A, S) is assumed to be
reduced).

Now assume that, for some n > 1, we have already defined the elements by, for
k=1,...,N and ¢ = 1,...,n, satisfying (1) and (2). Applying Lemma [Z.T1] to
br = by (s0 that ¢ = ¢,), we obtain that ¢, (S) — (S + 25:1 bin0a,,S) is cyclically
equivalent to an element of m(m™*' N J(S))% We have

m(m™ N J(S)? C (m™2 N J(S))J(S).

This implies in particular that ¢, (S) — S is cyclically equivalent to an element of
J(S)?. Combining Proposition B.7 with the already proved part (1) of Proposi-
tion E.I0, we conclude that ¢, (J(S)) = J(¢n(S)) = J(5). It follows that ¢, (S) —
(S+ 30, brn0a, S) is cyclically equivalent to an element of ¢, ((m™2 N J(S))J(S)).

Applying Lemma to I =m"2NJ(S), J=J(S) and f, = 0,5, we see that
every potential in (m"*2 N J(S))J(S) is cyclically equivalent to a potential of the
form

N
Z bk,n—i—laak S
k=1

for some by, 11 € m"2NJ(S). Tt follows that S +Zf€v:1 binOa, S s cyclically equivalent
to gpn(S+Zszl bk n+10a,,S). Thus, conditions (1) and (2) get satisfied with n replaced
by n + 1, completing our inductive step.

In view of condition (1), lim, o ¢1 - @, is a well-defined automorphism ¢ of
R((A)) such that p(u) —u € J(S) for all u € R((A)). Passing to the limit n — oo
in condition (2), we conclude that S’ is cyclically equivalent to ¢(S), completing the
proof of part (2) of Proposition EET0l O

Proof of Proposition[].9 We abbreviate J = J(S) and J' = J(5’) (understood as
the Jacobian ideals of S and S’ in R{{A))). As in Proposition [1.5 let L denote the
closure of the two-sided ideal in R{{A & C)) generated by C. Then we have

(4.10) R{(A®C))=R{(AY&L, JS+T)=J®L, JS+T)=J@&.L.

Let ¢ be an automorphism of R{({A®C')), such that o(S+T) is cyclically equivalent
to S’ +T. In view of ({I0) and Proposition 3.7, we have

(4.11) p(JoL)=JaL.
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Let ¢ : R{(A)) — R((A)) denote the restriction to R((A)) of the composition
py, where p is the projection of R((A & C)) onto R((A)) along L. In view of
Proposition 10, it suffices to show the following:

(4.12) ¥ is an automorphism of R((A)) such that
S" —4h(S) is cyclically equivalent to an element of 1(.J?)

(indeed, assuming (£I2) and using Proposition BT, we see that ¢ (J?) = J(¥(S5))?,
hence one can apply Proposition 410 to potentials S" and 1(S)).

Clearly, v is an algebra homomorphism, so can be represented by a pair (1)), ()
as in Proposition 2.4l To show that ¢ is an automorphism of R((A)), it suffices to
show that (! is an R-bimodule automorphism of A. By the definition, if we write
the R-bimodule automorphism ¢ of A @® C as a matrix

PAaA Pac
wca pcc)’
then () = ¢ 4. Since

o) Cop(JoL)=J®LCm(A)?®L,

it follows that p4c = 0, implying that () = 44 is an R-bimodule automorphism
of A, and that 1 is an automorphism of R((A)).

Since S"+ T is cyclically equivalent to (S +1T'), the same is true for the potentials
obtained from them by applying the projection p; it follows that S’—1(S) is cyclically
equivalent to po(T). Since T € C?, the claim that S’ — 4(S) is cyclically equivalent
to an element of 1(J?) follows from the fact that po(L) C +(J), or, equivalently,
that (L) C ¢(J) + L. Applying the inverse automorphism ¢! to both sides, it
suffices to show that L C J + ¢~ !(L). Using the obvious symmetry between J and
J', it is enough to show the inclusion L C J' + ¢(L).

Let us abbreviate M = m(A @ C), and I = J' + ¢(L). Since ¢(J) C J' & L, and
J C m(A)?, it follows that ¢(J) C J & (LN M?)=J + ML+ LM. Therefore, we
have

LCJ+L=p(J)+¢L) ST+ ML+ LM.
Substituting this upper bound for L into its right hand side, we deduce the inclusion
LCI+ ML+ MLM + LM>.

Continuing in the same way, for every n > 0, we have the inclusion

LCI+ Z MELM™ "  C I+ M™!,
k=0

In view of (2.3), it follows that L is contained in I, the closure of I in R{{A & C)).
However, it is easy to see that I = J' + ¢(L) is closed in R{({A & C)) (indeed, the
closedness of I is equivalent to that of ¢ =1 (I) = p=*(J')+ L, and so, by symmetry, it
is enough to show that ¢(.J)+ L is closed; but this is clear since o(J)+L = p~t((J))
is the inverse image of the closed ideal 1(.J) of R({A))). This completes the proofs
of Proposition and Theorem O
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Definition 4.13. We call the component (Ayeq,Srea) in the decomposition (45

the reduced part of a QP (A, S) (by Theorem 6] it is determined by (A, S) up to
right-equivalence).

Definition 4.14. We call a quiver @) (as well as its arrow span A) 2-acyclic if it has
no oriented 2-cycles, i.e., satisfies the following condition:

(4.13) For every pair of vertices i # j, either A, ; = {0} or A;; = {0}.

In the rest of this section we study the conditions on a QP (A, S) guaranteeing
that its reduced part is 2-acyclic. We need some preparation.

For a quiver ) with the arrow span A, let C = C(A) denote the set of cyclic
paths on A up to cyclical equivalence. Thus, C is either empty (if @) has no oriented
cycles at all), or countable. The space of potentials up to cyclical equivalence is
naturally identified with K¢. We say that a K-valued function on K¢ is polynomial
if it depends on finitely many components of a potential S and can be expressed as a
polynomial in these components. For a nonzero polynomial function F', we denote by
U(F) C K€ the set of all potentials S such that F(S) # 0. By a regular function on
U(F) we mean a ratio of two polynomial functions on K¢ such that the denominator
vanishes nowhere on U(F'); in particular, any function of the form G/F", where GG
is a polynomial, is regular on U(F'). If A’ is the arrow span of another quiver ', we
say that a map K¢ — KU is polynomial if its every component is a polynomial
function; similarly, a map U(F) — K €A is regular if its every component is a
regular function on U(F).

Now suppose that the arrow span A satisfies (£1]), and let {aq,by,...,ay,bn} be
any maximal collection of distinct arrows in () such that byay is a cyclic 2-path for
k=1,...,N. Then the quiver obtained from () by removing this collection of arrows
is clearly 2-acyclic. To such a collection we associate a nonzero polynomial function
on K¢“ given by
(4.14) Dgpren (8) = det (@0, )pa=1,.. N
where z;,_q, is the sum of the coefficients of b,a, and a,b, in a potential S, with the
convention that x_q, = 0 unless bya, is a cyclic 2-path.

Proposition 4.15. The reduced part (Ayea, Srea) of a QP (A, S) is 2-acyclic if and
only if DZ?’:'_’,I;JXI(S) # 0 for some collection of arrows as above. Furthermore, if A" is
the arrow span of the quiver obtained from Q) by removing all arrows ay, by, ..., ayn, by,
then there exists a regular map H : U(Dgiz'_'_'_lzf;’v) — KCY) such that, for any QP
(A,S) with S € U(DytN), the reduced part (Aveq, Srea) is right-equivalent to
(A, H(S)).

The proof of Proposition follows by tracing the construction of (Aeq, Sred)
given in the proof of Lemma L7l Note that we use the following convention. If A is
2-acyclic from the start then the only collection {ay,bq,...,ay,by} as above is the
empty set; in this case, the function D2~ is understood to be equal to 1, and H
is just the identity mapping.
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5. MUTATIONS OF QUIVERS WITH POTENTIALS
Let (A, S) be a QP. Suppose that a vertex k € )y does not belong to an oriented
2-cycle. In other words, k satisfies the following condition:
(5.1) For every vertex i, either A; or Ay, is zero.

Replacing S if necessary with a cyclically equivalent potential, we can also assume
that

(5.2) No cyclic path occurring in the expansion of S starts (and ends) at k.
Under these conditions, we associate to (4, S) a QP Jix(4, S) = (A, S) on the same

set of vertices (). We define the homogeneous components A; ; as follows:
~ Ai)* ifi=korj=k
(5.3) A, = (4j) J
A;; ® A Ax,; otherwise;

here the product A; Ay ; is understood as a subspace of A*> C R((A)). Thus, the
R-bimodule A is given by

(5.4) A =e Ae, © Aer A D (erA)” @ (Aey)™,
where we use the notation
(5.5) Be=l—e= Y e
i€Qo—{k}
We associate to ) the set of arrows @1 in the following way:

e Take all the arrows ¢ € ()1 not incident to k.

e For each incoming arrow a and outgoing arrow b at k, create a “composite”
arrow [ba] corresponding to the product ba €€ AeiA.

e Replace each incoming arrow a (resp. each outgoing arrow b) at k by the
corresponding arrow a* (resp. b*) oriented in the opposite way.

More formally, for i = k or j = k, we set
(5.6) Q1N Ay ={a"|aeQinA}
(the dual basis); and for ¢ and j different from &, we define

(5.7) Q1N Ay = (QiNAy) |_| {[ba] [ b€ Q1N Aig, a € Q1N Ay},

where [ba] € @1 N A, Ay ; denotes the arrow in @1 associated with the product ba.
We now associate to S the potential 11,(S) = S € R((A)) given by

(5.8) S =[S]+ Ay,
where
(5.9) Ay = Ag(A) = > [ba)a*b*,

a,beQ1: h(a)=t(b)=k

and [S] is obtained by substituting [aya,41] for each factor a,a,.; with t(a,) =
h(a,+1) = k of any cyclic path a; - - - a4 occurring in the expansion of S (recall that
none of these cyclic paths starts at k). It is easy to see that both [S] and Ay do not
depend on the choice of a basis (), of A.



QUIVERS WITH POTENTIALS I 21

The following proposition is immediate from the definitions.

Proposition 5.1. Suppose a QP (A, S) satisfies (5.1)) and (5.2), and a QP (A’,S")
is such that e, A’ = A’ep, = {0}. Then we have

(5.10) T(A® A, S +8) = (A, S) @ (4, ).

Theorem 5.2. The right-equivalence class of the QP (%A(, §) = ur(A,S) is deter-
mined by the right-equivalence class of (A, S).

Proof. Let A be the finite-dimensional R-bimodule given by
(5.11) A=A (e, A) & (Aep)”.

The natural embedding A — A identifies R((A)) with a closed subalgebra in R(({A)).
We also have a natural embedding A — R((A)) (sending each arrow [ba] to the
product ba). This allows us to identify R((A)) with another closed subalgebra in
R((ﬁ)), namely, with the closure of the linear span of the paths a; - - - a4 such that
ay ¢ e A and ag ¢ Aey. Under this identification, the potential S given by (5.8)) and
viewed as an element of R((A)) is cyclically equivalent to the potential
> ovn( > aah).
beQ1NAey, a€Q1Nex A

Taking this into account, we see that Theorem becomes a consequence of the
following lemma.

Lemma 5.3. Every automorphism ¢ of R({(A)) can be extended to an automorphism
© of R((A)) satisfying

(5.12) P(R{(A))) = R((A)),

and

(5.13) (Y aah)= Y aat, B Y Vb= Y bb
acQ1Nei A ac@Q1Neg A be@Q1NAey beQi1NAey

In order to extend ¢ to an automorphism @ of R({A)), we need only to define the
elements @(a*) and @(b*) for all arrows a € Q1 NexA and b € Q1 N Aey.

We first deal with @(a*). Let Q1 NexA ={ay,...,as}. In view of Proposition [2.4]
the action of ¢ on these arrows is given by

(5.14) (@(&1) plag) -+ 80(%))2(01 az - as) (Co+ Cy),

where:

e (y is an invertible s X s matrix with entries in K such that its (p, ¢)-entry
is 0 unless t(a,) = t(a,);
e () is a s x s matrix whose (p, ¢)-entry belongs to m(A)(q,) t(a,)-

Note that Cy + (' is invertible, and its inverse is of the same form: indeed, we have

(Co+C) =T +Cytoy) oyt = I+Z et es .
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Now we define the elements $(ar) by setting

fga{; ay
al al
% :2 _ (C() —I—Cl)_l :2
P(ay) ay

It follows that

2

3> aal) = (Flar) Flaz) - Blan) |7
’ B(a)
= (al as - as) azz = Zapa;.

For b € Q1 N Aeg, we define @(b*) in a similar way. Namely, let Q; N Ae, =

{b1,...,b}. As above, the action of ¢ on these arrows is given by
©(b1) by

(5.15) go(fb) = (Do + Dy) bf :
@(bt) 6t

where:

e Dy is an invertible ¢ x ¢ matrix with entries in K such that its (p, ¢)-entry
is 0 unless h(b,) = h(b,);
e Dy is at x t matrix whose (p, ¢)-entry belongs to m(A)nw,)n,)-

As above, we see that Dy + D; is invertible, and its inverse is of the same form. Now
we define the elements $(b}) by setting

(@01) @5) --- @br)) = (b1 b5 --- b)) (Do+ Dy)~".
It follows that

(01)
PO by = (B0 @(05) - 2(by)) (:bQ)
/ 95(.[%)
by
= (by b5 - 0F) 6:2 :Zb;bq.
N g

The condition (B.13)) is then clearly satisfied; the construction also makes clear that

~ ~

the automorphism @ of R({A)) preserves the subalgebra R((A)). As a consequence
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of Proposition 2.4, ¢ restricts to an automorphism of R((A)), verifying (5.12) and
completing the proofs of Lemma and Theorem (.21 O

Note that even if a QP (A, S) is assumed to be reduced, the QP jix(4, S) = (4, 5)
is not necessarily reduced because the component [S]® € A? may be non-zero.
Combining Theorems and [0.2] we obtain the following corollary.

Corollary 5.4. Suppose a QP (A,S) satisfies (B.1) and [B.2), and let iy (A, S) =
(A,S). Let (A,S) be a reduced QP such that

(5.16) (4,9) = Ay, S?) @ (4,5)

(see [H)). Then the right-equivalence class of (A,S) is determined by the right-
equivalence class of (A, S).

Definition 5.5. In the situation of Corollary [5.4] we use the notation p(A4,S) =
(A, S) and call the correspondence (A, S) — (A, S) the mutation at vertex k.

Note that if a QP (A, S) satisfies (5.I) then the same is true for fi(A4,S) and
for pr(A,S). Thus, the mutation py is a well-defined transformation on the set
of right-equivalence classes of reduced QPs satisfying (B.I). (With some abuse of
notation, we sometimes denote a right-equivalence class by the same symbol as any
of its representatives.)

Example 5.6. Consider the quiver @) with vertices {1,2,3,4} and arrows a : 1 — 2,
b:2—3,c:3—4andd:4— 1:

3

Tb

2

Let S = dcba. Let us perform the mutation at vertex 2. The arrow a is replaced by
e:=a":2— 1, and b is replaced by f := b* : 3 — 2. We also have a new arrow
g :=1[ba] : 1 — 3. So p12(A) corresponds to the quiver with vertices {1,2,3,4} and
arrows ¢, d, e, f, g:

C
-

QU
—_ <

e —
a

The potential ji5(S) = S is given by
S = dcg + gef;
thus, f12(A4, S) is reduced, and we have fiz(A4, S) = ua(A,S).
Note that S does not satisfy condition (5.2]) with respect to vertex k = 3 since the
path gef starts and ends at 3. But we can fix this condition by replacing S with
a cyclically equivalent potential, say S = dcg + efg. Now let us mutate (A, S’) at
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vertex 3. The arrows ¢, f, g are replaced by ¢* : 4 — 3, f*:2 — 3 and g* : 3 = 1,
respectively. We also add new arrows [cg| : 1 — 4 and [fg] : 1 — 2. Thus, us(A,5")
has arrows {d, e, c*, f*, g%, [cq], [f9]}:

c*

4 ——>3

*

dl|lea? s

The potential 113(S’) is given by
ps(S') = dleg] + e[fg] + [fglg"f* + leglg™c”.

It is not reduced, so to obtain the reduced QP ug(ﬁ, S"), we need to remove the
trivial part of pi3(A, S"). The resulting quiver is as follows:

4

1 2

Since it is acyclic (that is, has no oriented cycles), the corresponding potential is 0.
Our next result is that every mutation is an involution.

Theorem 5.7. The correspondence iy, : (A, S) — (A, S) acts as an involution on
the set of right-equivalence classes of reduced QPs satisfying (5.1)), that is, p2(A,S)
is right-equivalent to (A, S).

Proof. Let (A, S) be a reduced QP satistying (1)) and (£.2)). Let px(A, S) = (A, S)
and [i2(A, S) = in(A, S) = (4, ). In view of Theorem FL6 and Proposition .1, it is
enough to show that

(5.17) (A, S) is right-equivalent to (A4, S) @ (C,T), where (C,T) is a trivial QP.

Using (5.4) twice, and identifying (exA)* with A*ex, and (Aex)* with e, A*, where
A* is the dual R-bimodule of A, we conclude that

(5.18) A=A® Ae,A® Ae, A

Furthermore, the basis of arrows in A consists of the original set of arrows 1 in A
together with the arrows [ba] € AerA and [a*b*] € A*epA* for a € Q1 N erA and
b e QN Aey.

Remembering (5.8) and (5.3), we see that the potential S is given by

(5.19) S = [[S]] + [Ak(A)] + Ap(A) = [S] + Z ([ba][a*b*] + [a*b*|ba),
a,beQ1: h(a)=t(b)=k
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hence it is cyclically equivalent to

(5.20) Sy =[S] + > ([ba] + ba)]a*b*]

a,beQ1: h(a)=t(b)=k

(recall that [S] is obtained by substituting [a,a,11] for each factor a,a,.; with t(a,) =
h(a,+1) = k of any cyclic path a; - - - a4 occurring in the path expansion of S). Let
us abbreviate

(C,T) = (AerA ® A*e,A*, > [ba][a*b*]).

a,beQ1: h(a)=t(b)=k
This is a trivial QP (cf. Proposition [4); therefore to prove Theorem [5.7 it suffices

to show that the QP (A,.S)) given by (5.I8) and (E20) is right-equivalent to (A4, S) @
(C,T). We proceed in several steps.

Step 1: Let ¢; be the change of arrows automorphism of R((A)) (see Defini-
tion [2Z.5) multiplying each arrow b € Q1 N Ae; by —1, and fixing the rest of the

arrows in A. Then the potential Sy = ¢1(S7) is given by

Sy =[S] + > ([ba] — ba)[a*b*].
a,beQ1: h(a)=t(b)=k
Step 2: Let @, be the unitriangular automorphism of R((A)) (see Definition 235)
sending each arrow [ba] € AexA to [ba] + ba, and fixing the rest of the arrows in

A. Remembering the definition of [S], it is easy to see that the potential ¢o(Ss) is
cyclically equivalent to a potential of the form

S5 =S+ > [ba)([a*b*] + f(a, b))

a,beQ1: h(a)=t(b)=k

for some elements f(a,b) € m(A @ AeyA)>

Step 3: Let o3 be the unitriangular automorphism of R((A)) sending each arrow

[a*b*] € A*e, A* to [a*b*] — f(a,b), and fixing the rest of the arrows in A. Then we
have ¢3(S3) =S +T.

Cgmbining these three steps, we conclude that the QP (%A(, Si) is right-equivalent
to (A,5+T) = (A,S) @ (C,T), finishing the proof of Theorem 5.7l O

6. SOME MUTATION INVARIANTS

In this section we fix a vertex k and study the effect of the mutation p; on the
Jacobian algebra P (A, S). We will use the following notation: for an R-bimodule B,
denote

(6.1) By =eBe. = @ Bij

irj#k
(see (5.5)). Note that if B is a (topological) algebra then By, ; is a (closed) subalgebra
of B.
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Proposition 6.1. Suppose a QP (A, S) satisfies (51) and (52), and let (;1;, :i) =

[k (A, S) be given by (B.4) and (5.8). Then the algebras P(A, S);; and P(A, S);
are 1somorphic to each other.

Proof. In view of (5.4]), we have

(6.2) Api = A © AeiA.
Thus, the algebra R((AVM» is generated by the arrows ¢ € Q1 N Ay and [ba] for
a € QiNeAand b € QN Aei. The following fact is immediate from the definitions.

Lemma 6.2. The correspondence sending each ¢ € Q1 N Ay to itself, and each
generator [ba] to ba extends to an algebra isomorphism

R{(A; 1)) = RU{AN i
Let u + [u] denote the isomorphism R((A));; — R((Avkk» inverse of that in
Lemma It acts in the same way as the correspondence S +— [S] in (B.8): [u] is
obtained by substituting [a,a,+1] for each factor a,a,1 with t(a,) = h(ay+1) = k of
any path a; - --agq occurring in the path expansion of w.

Lemma 6.3. Thf cgrrespondence u +— [u] induces an algebra epimorphism
P(A, S)ff’]; — P(A, S),%J;.

Proof. Tt is enough to prove the following two facts:

(6.3) R((AD i = R{AL) + ()i

(6.4) [J()ii) © RUAz ) NI(9) 4

To show (6.3), we note that if a path a,---a; € R({A));; does not belong to

R({A; ;) then it must contain one or more factors of the form a*b* with h(a) =
t(b) = k. In view of (5.8)) and (59), we have

(6.5) a’b’ = 8[@}5 — (9[5[1] [S]

Substituting this expression for each factor a*b*, we see that a; - --aq € R((A;;)) +
J(g)kk, as desired.

To show ([6.4), we note that J(S5);; is easily seen to be the closure of the ideal
in R((A)); ; generated by the elements 9,5 for all arrows ¢ € Q; with t(c) # k and
h(c) # k, together with the elements (0,9)d’ for a,a’ € Q1 NexA |, and V(0,5) for
bt/ € Q1 N Aey. Let us apply the map u — [u] to these generators. First, we have:

(6.6) [0.5] = 0.5.
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With a little bit more work (using (6.35])), we obtain

[(0.5)aT = (Fpa[SDbe’]

t(b)=k

(6.7) = > (9paS — a"b)[ba]
t(b)=k
= > (FpaS)[ba’] — a* 05,
t(b)=k
and
V'(28)] = Y [V'al(9pa[S)
h(a)=Fk
(6.8) = Y [Va](9pa)S — a*b)

h(a)=Fk

= Z [V'a](Opa)S) — (Oy=S)b".

h(a)=k
This implies the desired inclusion in (6.4]). O

To finish the proof of Proposition [6.1] it is enough to show that the epimorphism
in Lemma (let us denote it by «) is in fact an isomorphism. To do this, we

construct the left inverse algebra homomorphism 3 : P(A, §)kk — P(A, S)ii (s0
that Sa is the identity map on P(A, S); ;). We define 8 as the composition of three

maps. First, we apply the epimorphism P(AV, §)k P = P(AV, g)k ; defined in the same
way as a. Remembering the proof of Theorgm@jﬂ and using the notation introduced
there, we then apply the isomorphism P(E, §)kk — P(A® C,S +T);; induced
by the automorphism @spop; of R((A @ C)). Finally, we apply the isomorphism
PA®C,S+T);; — P(A,5);; given in Proposition

Since all the maps involved are algebra homomorphisms, it is enough to check
that Sa fixes the generators p(c) and p(ba) of P(A, S); ;, where p is the projection
R{{A)) — P(A,S), and a,b,c have the same meaning as above. This is done by
direct tracing of the definitions. O

Proposition 6.4. In the situation of Proposition[6.1, if the Jacobian algebra P(A,S)
is finite-dimensional then so is P(A,S).

Proof. We start by showing that finite dimensionality of P(A,S) follows from a
seemingly weaker condition.

Lemma 6.5. Let J C m(A) be a closed ideal in R({A)). Then the quotient alge-
bra R((A))/J is finite dimensional provided the subalgebra R((A)); i/ Jp is finite
dimensional. In particular, the Jacobian algebra P(A,S) is finite-dimensional if and
only if so is the subalgebra P(A, S); ;-

Proof. Similarly to (6.1]), for an R-bimodule B, we denote

B, ;= exBey =@ Brj, By, =eBer = P B
j#k i#k
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We need to show that if R((A));/J;; is finite dimensional then so is each of the
spaces R{(A));. i/ i RUAN bx/ Tip and R{(A) ) p i/ i g Let us treat R((A))kr/ Jr
the other two cases are done similarly (and a little simpler).

Let

leAk,lAc:{ala--was}a leA]Ag,k:{blw'wbt}'
We have
R{(A))ir = Ker © @ arR((A)) b
£m

It follows that there is a surjective map a : K x Matgy;(R({(A)) ;1) = RUA ) kk/ Tk k
given by

a(c,C) =plcex + (a1 az --- a,)C ),

where Mat,(B) stands for the space of s x t matrices with entries in B, and p is the
projection R({(A)) — R({A))/J. The kernel of a contains the space Matsx(J; 1),
hence R{{A))rx/Jxx is isomorphic to a quotient of the finite-dimensional space K x
Matw i (R{(A)) 1/ Jii)- Thus, R{(A))kx/ Ik is finite dimensional, as desired. [

To finish the proof of Proposition [6.4], suppose that P (A, S) is finite dimensional.
Then P(A, S);; is finite dimensional by Proposition G.Il Applying Lemma to
the QP (A, S), we conclude that P(A, S) is finite dimensional, as desired. O

Remembering (5.I6]) and using Proposition .3, we see that Propositions and
have the following corollary.

Corollary 6.6. Suppose (A, S) is a reduced QP satisfying (5.1)), and let (A, S) =
(A, S) be a reduced QP obtained from (A,S) by the mutation at k. Then the
algebras P(A, S); ;. and P(A, g)kk are isomorphic to each other, and P(A,S) is
finite-dimensional if and only if so is P(A,S).

We see that the class of QPs with finite dimensional Jacobian algebras is invariant
under mutations. Let us now present another such class.

Definition 6.7. For every QP (A, S), we define its deformation space Def(A, S) by
(6.9) Def(A,S) =Tr(P(A,S))/R
(see Definitions [3.1] and B.4)).

Remark 6.8. Definition can be motivated as follows (we keep the following
arguments informal although with some work they can be made rigorous). Let G =
Aut(R((A))) be the group of algebra automorphisms of R({A)) (acting as the identity
on R). Using Proposition 2.4 we can think of G as an infinite dimensional algebraic
group. In view of Definition B4l G acts naturally on the trace space Tr(R((A))).
Remembering Definition 4.2, it is natural to think of the deformation space of a QP
(A, S) as the normal space at 7(S) of the orbit G-7(S) in the ambient space 7(m(A)?)
(recall that m stands for the natural projection R{{A)) — Tr(R((A)))). Arguing as
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in Lemma [LT1] we conclude that the infinitesimal action of (the Lie algebra of) G
on 7(m(A)?) is by the transformations

m(u) — W(Z b0y, ),

k=1

where Q1 = {a1,...,an} is the set of arrows, and by, € M(A)p(,) (e, (this is well
defined in view of Proposition B.3]). This makes it natural to identify the tangent
space at 7(S5) of G - 7(S) with w(J(S)), hence to identify the corresponding normal
space with m(m(A))/m(J(S)), or equivalently, with the space Def(S) given by (6.9).

Proposition 6.9. In the situation of Propositionl[6.1], deformation spaces Def(ﬁ, §)
and Def(A, S) are isomorphic to each other.

Proof. In view of Proposition B.5, Def(A,S) is isomorphic to Tr(P(A, S); 1)/ By -
Therefore, our assertion is immediate from Proposition [6.11 0J

Definition 6.10. We call a QP (A, S) rigid if Def(A, S) = {0}, i.e., if Tr(P(A4,S5)) =
R.

Combining Propositions [£5] and [6.9], we obtain the following corollary.

Corollary 6.11. If a reduced QP (A, S) satisfies (0.1)) and is rigid, then the QP
(A, S) = ur(A,S) is also rigid.

Some examples of rigid and non-rigid QPs will be given in Section 8.

7. NONDEGENERATE QPs

If we wish to be able to apply to a reduced QP (A, S) the mutation at every vertex
of Qp, the R-bimodule A must satisfy (B.I]) at all vertices. Thus, the arrow span A
must be 2-acyclic (see Definition . I14]). Such an arrow span A can be encoded by a
skew-symmetric integer matrix B = B(A) = (b; ;) with rows and columns labeled by
o, by setting

(71) b@j = dim Ai,j — dim Aj,i-
Indeed, the dimensions of the components A, ; are recovered from B by
(72) dlm Ai,j = [bi,j]'i‘?

where we use the notation
(7.3) [z]; = max(z,0).

Proposition 7.1. Let (A, S) be a 2-acyclic reduced QP, and suppose that the reduced
QP ur(A,S) = (A, S) obtained from (A, S) by the mutation at some vertex k (see

Definition [5.3) is also 2-acyclic. Let B(A) = (b;) and B(A) = (b;;) be the skew-
symmetric integer matrices given by ([LIl). Then we have

— —biJ ZfZ:]{? O’I"j:]{?,'
bij -

(7.4) |
bij + [bikl+ [Okjle — [=bikls [—brjls  otherwise.
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Proof. First we note that by Proposition 4] if (C,T') is a trivial QP then dim C; ; =
dim C}; for all ¢, j. In view of (G.I6), this implies that

(75) Ei,j = dim Zi,j - dlmZN = dim A"i’j — dim Avjm
where (A, S) = fix(A, S). Using (5:3), we obtain
~ dll’IlAj’Z le:kOIJIk7
dim Ai,j =
dim A; ; + dim A; ;, dim A, ; otherwise.

To obtain (7.4)), it remains to substitute these expressions into (Z.0) and use (7.2). O

An easy calculation using the obvious identity x = [z]y — [—x]; shows that the
second case in (4] can be rewritten in several equivalent ways as follows:

5,’7]' = bm‘ + sgn(bi,k) [bi,kbk,j]-i-
= bij + [=bik]t brj + bi[brs]+
i kb, + bi k| bk
5 .

It follows that the transformation B ++ B given by (7.4)) coincides with the matriz
mutation at k which plays a crucial part in the theory of cluster algebras (cf. [18]
(4.3)], [20, (2.2), (2.5)]).

We see that the mutations of 2-acyclic QPs provide a natural framework for matrix
mutations. With some abuse of notation, we denote by pui(A) the 2-acyclic R-
bimodule such that the skew-symmetric matrix B(u(A)) is obtained from B(A) by
the mutation at k; thus, ug(A) is determined by A up to an isomorphism.

Note that the matrix mutations at arbitrary vertices can be iterated indefinitely,
while the 2-acyclicity condition ({.I3) can be destroyed by a QP mutation. We will
study QPs for which this does not happen.

Definition 7.2. Let ky,...,k; € )y be a finite sequence of vertices such that &, #
kpii for p=1,...,0 —1. We say that a QP (A,S) is (ke, - - -, k1)-nondegenerate if
all the QPs (A, S), e, (A, S), tg iy (A,S), oo, piie, - - - iy (A, S) are 2-acyclic (hence
well-defined). We say that (A, S) is nondegenerate if it is (ky, ..., k1)-nondegenerate
for every sequence of vertices as above.

= by +

To state our next result recall the terminology introduced before Proposition .15l
In particular, for a given quiver with the arrow span A, the QPs on A are identified
with the elements of K¢,

Proposition 7.3. Suppose that the base field K is infinite, Q) is a 2-acyclic quiver
with the arrow span A, a sequence of vertices ki, ..., ke is as in Definition [7.3, and
A" = g, -+, (A). Then there exist a non-zero polynomial function F : K€M —
K and a reqular map G : U(F) — K4 such that every QP (A, S) with S €
U(F) is (kg,. .., k1)-nondegenerate, and, for any QP (A, S) with S € U(F), the QP
Wi, - - - fiy (A, S) is right-equivalent to (A', G(S5)).

Proof. We proceed by induction on ¢. First let us deal with the case £ = 1, that
is, with a single mutation p. Recall that ug(A, S) = (A,S) is the reduced part of

the QP nx(A,S) = (/T, S) given by (5.3) and (5.8). It is clear from the definition
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that S = é(S) for a polynomial map G : K - KA. Now let us apply
Proposition .13 to the quiver with the arrow span A. We see that there exists
a polynomial function of the form D4y on K¢ (see (@I4), where we have

changed the notation for the arrows to avoid the notation conflict with Section [5]) such
that the reduced part (4, S) of a QP (4, S) is 2-acyclic whenever S € U(D% v,

7777 C]/_\L
Furthermore, for S € U(D&--43) the QP (A, S) is right-equivalent to (A’, H(S))
for some regular map H : U(D& vy — K€A) where A’ = jy,(A). We now define

a polynomial function F : K@ — K and a regular map G : U(F) — K°%“) by
setting
(7.6) F=Dhivo@G G=Hod.

1se-CN

To finish the argument for ¢ = 1, it remains to show that F' is not identically equal
to zero. But this is clear from the definitions (4.14) and (5.8, since the oriented 2-
cycles in A (up to cyclical equivalence) are of the form c[ba] and so are in a bijection
with the oriented 3-cycles cba in A that pass through k.

Now assume that ¢ > 2, and that our assertion holds if we replace ¢ by ¢ — 1. Let
Ay = pyy (A),s0 A" = g, - - - i, (Ar). By the inductive assumption, there exist a non-
zero polynomial function F” : K¢ — K and a regular map G’ : U(F') — K¢
such that, for any QP (A, Sy) with S; € U(F'), the QP g, - - - i, (A1, S1) is right-
equivalent to (A’, G'(S1)). Also by the already established case ¢ = 1, there exists a
non-zero polynomial function F” : K¢(41) — K such that, for any QP (A, S;) with
S1 € U(F"), the QP pg, (Aq,S7) is 2-acyclic, hence is right-equivalent to some QP
on A. Since the base field K is assumed to be infinite, we have U(F") N U(F") # (.
Choose S\” € U(F') NU(F"), and let (A, So) = i(A;, S\”). By Theorem B7] we
have p(A, Sp) = (A, Sfo)). By the above argument for ¢ = 1, there exist a nonzero
polynomial function Fy : K¢ — K and a regular map G, : U(Fy) — K€1)
(of the type (I.6])) such that ug(A,S) = (A1, G1(9)) for S € U(Fy). In particular,
we have G1(5)) = Sfo) implying that F’ o G; is a nonzero polynomial function on
K€M Tt follows that the nonzero polynomial function F(S) = F;(S)F'(G1(S)) and
the regular map G = G’ o Gy : U(F) — K¢ are well-defined and satisfy all the
required conditions. This completes the proof of Proposition [7.3l O

Corollary 7.4. For every 2-acyclic arrow span A, there exists a countable family F
of nonzero polynomial functions on K¢ such that the QP (A, S) is nondegenerate
whenever S € (\perU(F). In particular, if the base field K is uncountable, then
there exists a nondegenerate QP on A.

Proof. By Proposition [[.3] for every sequence ki, ..., k&, as in Definition [Z.2] there
(ke, ..., k1)-nondegenerate for S € U(Fj,
able family F.

It remains to prove that ((pcrU(F) # 0 provided K is uncountable. If A is
acyclic, i.e., has no oriented cycles, then K¢“) = {0}, and each of the functions in
F is just a nonzero constant, so there is nothing to prove; no assumption on K is
needed here. If A has at least one oriented cycle then the set C(A) is countable (recall

.....
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that it consists of cyclic paths up to cyclical equivalence). Thus, we can realize K¢

as the polynomial ring K[X7, Xo,...] in countably many indeterminates. Since K is
uncountable, we can choose x; so that F(z1) # 0 for all FF € F N K[X;]. Then we
choose xg so that F(z1,x9) # 0 for all FF € F N K[X7, X5]. Continuing like this, we
find a sequence z1, g, ... such that F(z1,xs,...) #0 for all ' € F. O

8. RicipD QPs
Proposition 8.1. Fvery rigid reduced QP (A, S) is 2-acyclic.

Proof. First note that the definition of rigidity can be conveniently restated as fol-
lows:

(8.1) a QP (A, S) is rigid if and only if every potential
on A is cyclically equivalent to an element of J(S).

Now suppose for the sake of contradiction that for some ¢ # j both components A4, ;
and A, ; are non-zero. Choose non-zero elements a € A; ; and b € A,;. Remembering
the definition of the Jacobian ideal (see Definition[B.1]), it is easy to see that the cyclic
part of J(S) is contained in m(A)3. It follows that ab is not cyclically equivalent to
an element of J(.S), in contradiction with (8J]). O

Combining Proposition [R.1] with Corollary [6.11], we obtain the following result.
Corollary 8.2. Any rigid QP is nondegenerate.
Let us now give some examples.

Example 8.3. Recall that a skew-symmetric integer matrix B is acyclic if the corre-
sponding directed graph (with an arrow ¢ — j associated with each entry b; ; > 0) has
no oriented cycles. If the matrix B(A) given by (7.I]) is acyclic, then R((A))cy. = {0},
and so the only QP associated with A is (A,0), which is clearly rigid.

Now suppose that A is 2-acyclic, and that B(A) is not necessarily acyclic but
is mutation equivalent to an acyclic matrix (i.e., can be transformed to an acyclic
matrix by a sequence of mutations). As a consequence of Corollary and Theo-
rem [0.7] there exists a potential S such that (A, S) is a rigid reduced QP; moreover,
(A, S) is unique up to right-equivalences.

Example 8.4. For A arbitrary, the deformation space of a QP (A,0) is naturally
identified with the space of potentials modulo cyclical equivalence, hence it is infinite-
dimensional provided A has at least one oriented cycle.

Example 8.5 (Cyclic triangle). Let @ be the quiver with three vertices 1,2,3 and
three arrows a: 1 —2,0:2 —3and c:3 — 1:

N

An arbitrary potential S is cyclically equivalent to the one of the form S = F/(cba),
where I € K][t]] is a formal power series. The deformation space Def(A,S) is
naturally isomorphic to the quotient space of tK[[t]] modulo the ideal generated by

1
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tdF'/dt. 1f char K = 0, and n > 1 is the smallest exponent such that t" appears in F,
then dim Def(A, S) =n — 1. In particular, (A, S) is rigid if and only if n = 1.

Now let us consider the QP (A, S) = fi2(A, S); in view of (5.6]), (5.7) and (5.8), A
has four arrows a*, b*, ¢, [ba], and

S = F(c[ba]) + [baa*b*.

Thus, if n > 2 then (A, S) is reduced and so is equal to ps(A4,S) = (4,5). Since
t2(A, S) has an oriented 2-cycle formed by the arrows ¢ and [ba|, the mutations at
vertices 1 and 3 cannot be applied. We see that the QP (A, F/(cba)) is degenerate
for n > 2.

Example 8.6 (Double cyclic triangle). Now consider the quiver with three vertices
1,2, 3 and six arrows aj,as : 1 — 2, by,by : 2 — 3 and ¢1,¢5 : 3 — 1:

2
AN
AQA
3
1

[

1

Any potential S on A is cyclically equivalent to the one whose degree 3 component
belongs to the 8-dimensional space A§,1 = Ay 3A32A5;. It is known that the diagonal
action of the group GL3 on K? ® K? ® K? has seven orbits, see e.g., [23, Chapter
14, Example 4.5]. Thus, by performing a change of arrows automorphism, we can
assume that the degree 3 component of S is one of the representatives of these orbits.

An easy case-by-case analysis shows that no potential can give rise to a rigid QP
on A.
For instance, let

(8.2) S = c¢1biay + cabsas.

Then J(S) is the closure of the ideal in R((A)) generated by six elements
c1b1,b1aq, aicy, cobs, baasg, ascs.

One checks easily that the cyclic path c¢1bya1c9b1a9 is not cyclically equivalent to an

element of J(S), hence (A, S) is not rigid.

Now let us compute p15(A, S). Again setting (A, S) = fia(A4, S), we see that A has
ten arrows

CL’{, a;, b’1(7 bgu C1, Ca, [blal]v [b1a2]7 [b2a1]7 [b2a2]7

and

2
S = c1[bras] + c2[boas] + Z [biaj]a’b;.

ij=1
To obtain the splitting (@) of (A, S), we apply the automorphism ¢ of R((A)) fixing
all arrows except ¢; and ¢y, and such that ¢(c;) = ¢;—a;b;. An easy check shows that
(A, S) = (A, S) can be described as follows: A is 6-dimensional with the arrows

ay, as, by, by, [bras], [baaq], and

g = [blag]a;b’f + [bgal]a{bg.
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Thus, the mutated QP (A,S) can be obtained from the initial QP (A,S) by a
renumbering of the vertices. This implies that one can apply to (A,S) unlimited
mutations at arbitrary vertices, so (A, S) is a non-rigid, nondegenerate QP.

Example 8.7. For each n > 0, let us consider the following quiver Q(n), which we
refer to as the triangular grid of order n. The vertex set of Q(n) is

Qn)o ={(p.q,7) € Z% | p+q+7r =n};

and there is a single arrow (p1, q1,71) — (p2, g2, 72) if and only if (pa, g2, 72) — (1, ¢1,71)
is one of the three vectors (—1,1,0), (0,—1,1), (1,0, —1). Thus, the vertices of Q(n)
form a regular triangular grid with n? cyclically oriented unit triangles. For example,

the quiver Q(4) is
040
130 031
12

220/
310/ \211
400/ \301/ \20 \004

Let A = A(n) be the arrow span of Q(n), and let a € A (resp. b € A, ¢ € A) denote
the sum of all arrows of Q(n) that are parallel translates of (—1,1,0) (resp. (0, —1,1),
(1,0,—1)). Thus, every interior vertex i has three incoming arrows e;a, ;b, e;c and
three outgoing arrows ae;, be;, ce;. Every path of length d can be uniquely written
as aq - - - azare;, where each a, is one of the elements a, b, c, and j is a vertex; this
expression is non-zero if and only if the polygonal line obtained by attaching to the

1/ \022
\1 12/ \0 13
2/ \103/

vertex j the vectors corresponding to aq, as, ..., aq (in this order) is contained in our
grid.
Define a potential S € A3 by setting
S = cba — bca.

Then the Jacobian ideal J(S) is generated by the elements
(cb — be)ej, (ac — ca)ej, (ba — ab)e;

for all vertices j. It follows that the image of the path a4 - --asaie; in the Jacobian
algebra P(A, S) does not change under any permutation of the factors ay,...,aq.
In particular, we see that P(A,S) is spanned by the images of the paths c*b‘a™e;
for all vertices j and all k, ¢, m such that 0 < k,¢,m < n; hence P(A,S) is finite-
dimensional. By a similar argument, it is easy to see that (A,.S) is rigid. Indeed,
every potential on A is cyclically equivalent to an element of the closure of the span
of the elements (cba)™e; for all vertices j and all m > 0. Denoting by p the projection
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R{(A)) — Tr(P(A,S)), we see that the rigidity of (A, S) follows from the fact that
p(cbae;) = 0 for all j. Now if ae; # 0 and h(ae;) = ¢ then we have

p(cbae;) = p(acbe;) = p(cabe;) = p(cbae;).

Continuing in the same way, we obtain that, for any m > 1 such that a™e; # 0, we
have p(cbae;) = p(cbaey), where k is the end-point of the path a™e;. Taking m the
largest such that a™e; # 0, we conclude that p(cbae;) = 0, as desired.

As shown in [27], the quiver Q(3) in Example B.7]is not mutation-equivalent to an
acyclic one. So there exist QPs with finite-dimensional Jacobian algebras (and also
rigid QPs), which are not mutation-equivalent to acyclic ones.

We now describe a procedure to obtain new QPs with finite-dimensional Jacobian
algebras (and new rigid QPs) from old ones.

Definition 8.8. For a QP (A,S) and a subset I of the vertex set @y, we define the
restriction of (A, S) to I as the QP (Al, S|1) given by

A|[ - @Az,j

ijel
and
Slr=¢1(5),
where ¥y : R((A)) — R((Al)) is the algebra homomorphism such that ¢;(a) = a
for a € A7, and ¢;(b) = 0 for any arrow b not belonging to Al;.

Proposition 8.9. The homomorphism v; induces an epimorphism of Jacobian alge-
bras P(A,S) — P(Al|1, S|1) and an epimorphism of deformation spaces Def(A, S) —
Def(A|r, S|r). Therefore, if P(A,S) is finite-dimensional, or if (A, S) is rigid, then
the same is true for (Alr, S|r)-

Proof. Remembering ([B.1]), it is easy to see that 1;(0,5) = 0,91(S) for any arrow
a € Alr, and ¥;(0,S) = 0 for any arrow b not belonging to A|;. Therefore, we have
Yr(J(S)) = J(¢r(9)), implying all the assertions. O

Corollary 8.10. Suppose that A and A" are 2-acyclic, and there is a rigid QP (A, S)
on A. Let B(A) and B(A’) be the corresponding skew-symmetric integer matrices
gwen by ([T1)). Suppose that B(A') can be obtained by a simultaneous permutation

of rows and columns from some principal submatriz of a matriz mutation-equivalent
to B(A). Then there exists a rigid QP (A, S") on A'.

Proof. In view of (1)), the matrix B(A|;) is the principal submatrix of B(A) in-
volving rows and columns from I. Therefore, our assertion follows by combining
Proposition with Corollary [6.11] and Proposition [7.1l 0J

We conclude this section with a combinatorial application of Corollary [8.10.

Corollary 8.11. Let B = B(A(n)) be the matriz associated with the triangular grid
of some order n (see Example[8.7). Then none of the matrices mutation-equivalent
to B contains
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as a principal submatrix.

Proof. Note that B' = B(A’), where A’ is the quiver in Example We have seen
that there exists a rigid QP on A, but not on A’. Thus our statement is a special
case of Corollary BT0l O

Remark 8.12. Using the results in [I, Section 2.6] (cf. also [22, Theorem 1)), it
is easy to see that the quiver @(n) in Example 87 is naturally associated with the
cluster algebra structure in the coordinate ring of the base affine space of the group
SL,3. We have been informed by J. Schroer that, following his suggestion, A. Seven
has shown that a skew-symmetric matrix B’ associated with an arbitrary tree appears
as a principal submatrix in some matrix mutation-equivalent to the matrix B(A(n))
for some n. J. Schréer also informed us that Corollary B.I1l has been also proved by
B. Keller (using a different method).

9. RELATION TO CLUSTER-TILTED ALGEBRAS

Let ) be a quiver with the vertex span R and the arrow span A. Assume that
@ is 2-acyclic. Let B(A) be the corresponding skew-symmetric integer matrix given
by (). As shown in [19], the matrix B(A) gives rise to a cluster algebra of finite
type if and only if () is mutation-equivalent to a Dynkin quiver (that is, an arbitrary
orientation of a Dynkin diagram of one of the types A,, D,, FEs, E7, or Eg). In
particular, as we have seen in Example B3] there is a rigid reduced QP (A, S), and
it is unique up to a right-equivalence; in fact, (the right-equivalence class of) (A, S)
is obtained by a sequence of mutations from a QP (A, 0), where Ay is associated to
a Dynkin quiver. We now present an explicit choice of such a potential S. To do
this, we need some preparation.

First note that, according to [I9, Theorem 1.8|, every quiver mutation-equivalent
to a Dynkin quiver has no multiple edges, that is |b; ;| < 1 for every entry of B(A).
In other words, we have:

(9.1) dim A4; ; <1 for all i and j.

Therefore, we can unambiguously denote by a; ; the only arrow in a non-zero subspace
A, ;. We will also use the convention that a;; = 0 whenever A; ; = {0}.

Second, we use the following terminology: a chordless cycle in (the underlying
graph of) @ is a d-subset of vertices I C @)y that can be bijectively labeled by the
elements of Z/dZ so that the edges between them are precisely {i,i+1} for i € Z/dZ.
According to [I9] Proposition 9.7], if @ is mutation-equivalent to a Dynkin quiver
then the arrows of every chordless cycle in () must be cyclically oriented. In terms
of the arrow span A, this condition can be stated as follows:

(9.2)  For any chordless d-cycle I, there exists a bijection v : Z/dZ — I such
that the set of arrows in the restriction A|; is {a,) vty | € Z/dZ}.

(see Definition B.8)). Note that the choice of a bijection v in ([@.2)) is unique up to a
cyclic shift.
We call a potential S on A primitive if it has the form

(9.3) S = szayu),y(z) “ Qy(d—1),u(d) O (d),v(1) 5
1
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where the (finite) sum is over all chordless cycles I in @, for each I there is a
bijection v chosen as in ([3.2), and the coefficients x; are some non-zero elements of
the base field K.

Proposition 9.1. If a quiver Q) with the arrow span A is mutation-equivalent to a
Dynkin quiver, and S is a primitive potential on A, then the QP (A, S) is rigid.

To prove Proposition Q.1 we impose on () a weaker assumption that its arrow
span A satisfies (£.13]), (O.0) and (9.2)). Choose some vertex k, and (as in Section [7])
let ur(A) denote the 2-acyclic R-bimodule such that the skew-symmetric matrix
B(ux(A)) is obtained from B(A) by the mutation at k. It is easy to see that pg(A)
satisfies (O.I]) but not necessarily ([@.2)). In view of Corollary [6.11], the assertion of
Proposition is a consequence of the following lemma.

Lemma 9.2. Suppose that the arrow span A of a quiver Q satisfies (£13)), (@) and
@2), and that ux(A) also satisfies (Q.2)) for some vertex k. Let S be a primitive
potential on A. Then the QP (A, S) = ux(A, S) is right-equivalent to a QP on p(A)
with a primitive potential.

Proof. Let fix(A,S) = (A, S) be the QP given by (5.0), (5.7) and (5.8). Denote by
In(k) (resp. Out(k)) the set of vertices j (resp. i) such that dim Ay ; = 1 (resp.
dim A; = 1). In view of ([@.2)), every arrow a with both ends in In(k) U Out(k) has
h(a) € In(k) and t(a) € Out(k). We denote the set of these arrows by ()j. The

arrows of A can be unambiguously denoted as follows:
e a,; = a;; for all 4, j different from k and such that a;; # 0.
o a;; = [a;rak;] for all i € Out(k),j € In(k).
® a; = ay ; for j € In(k).
e ay; = ajy, for i € Out(k).
We can split S into the sum of four terms
(9.4) S =51+ S5+ S5+ Sy,
where
e S; involves (oriented) 3-cycles a; pa, ;a;,;-
e S, involves chordless d-cycles through k with d > 4;
e S3 involves chordless cycles having an arrow a;; € (] but not passing
through k;
e S, involves chordless cycles having no arrows with both ends in In(k)U{k}U
Out (k).
Using ([@.2)), it is easy to see that every chordless cycle I involved in Sy or S3 has
exactly one common point with each of the sets In(k) and Out(k). Also note that
every term in Sy or S contains exactly one arrow from ()}, while none of the terms
in Sy or Sy contain such arrows. Remembering (5.8]), we write the potential S as
follows:

(9.5) S = [S1] + [S2] + [Ss] + [Sa] + Ax.

We have
[S1]= ) wpimdisa

a;:€Q)
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and this is the degree 2 component S@ of S In view of (516), the arrows in A are

obtained from those in A by removing all arrows a;, € )} and their opposites a; ;.
Inspecting the other terms in ([@.5]), it is easy to see that

[So] = S35, [S4] =S4,
Ap =S+ Z @ 05 Qi

a;:€Q)

[53]: Z fi,jaj,ia

aj,i€Q]

where f;; = 0,,,53, and the terms 51,83 and S, have the same meaning as in (@.4)

with A replaced by A. Let ¢ be the automorphism of R{(A)) acting on arrows as

follows:

p(aj;) = x{_i}j,k}(aj,i — Qjkar),  P(aij) = aij — x{_i}j,k}fi,j

for every a;,; € ()}, and ¢ fixes the rest of the arrows. Then we have

0(S) =51+ S5+ Su+0( > (@m0 + Gl ktin; + fia))

a;,i €Q}

= gl + gg + §4 + Z (Zii,jaj,i — l'{_i}j7k}fi7jaj7kak7i).
a;,i€Q4

We see that the degree 2 component of () is

PP = " aija5,
a;:€Q)

and a moment’s reflection shows that

1 ~ ~
— > wa fos@inn

;i €QY

can be viewed as the component | ?g_ of a primitive potential on A. We conclude that
(A, S) is right-equivalent to (A, S + Sy + S3 + S4), finishing the proof. O

We conclude this section by briefly discussing a connection between Jacobian al-
gebras of rigid QPs and cluster-tilted algebras introduced in [8]. We refer to [§] for
precise definitions; roughly speaking, cluster-tilted algebras are endomorphism rings
of tilting objects in cluster categories. One can associate such an algebra to any
quiver () which is mutation-equivalent to a Dynkin quiver. As shown in [I3] Theo-
rem 4.1] (for type A) and [0, Theorems 4.1, 4.2], the cluster-tilted algebra associated
to () is isomorphic to the path algebra of () modulo an explicitly described ideal of
relations. By inspection, this ideal is exactly the Jacobian ideal of a primitive poten-
tial S given by (@.3]). Thus, Proposition has the following corollary, which shows
that the Jacobian algebras of QPs can be viewed as generalizations of cluster-tilted
algebras.

Corollary 9.3. If a quiver QQ with the arrow span A is mutation-equivalent to a
Dynkin quiver, then the Jacobian algebra P(A,S) of a rigid QP on A (explicitly
given by (@3) ) is isomorphic to the cluster-tilted algebra associated to Q.
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10. DECORATED REPRESENTATIONS AND THEIR MUTATIONS
The following definition is inspired by [28§].

Definition 10.1. A decorated representation of a QP (A, S) is a pair M = (M, V),
where V' is a finite-dimensional (left) R-module, and M is a finite-dimensional
R((A))-module annihilated by J(.5).

Equivalently, M is a finite-dimensional P (A, S)-module. We will sometimes write
M = (A, S, M, V) and refer to such a quadruple as a QP-representation.

We have M = ®ier M; and V = @z‘er Vi, where M; = e; M and V; = ¢;V. With
some abuse of notation, for u € R({(A)) or u € P(A, S), we denote the multiplication
operator m — um on M simply as u : M — M; we write u = uy; if we need
to emphasize the dependence of this operator on M. In particular, for each arrow
a € A, we have a : M) — My, and aly, = 0 for i # t(a).

Note that every finite-dimensional R((A))-module M is nilpotent, i.e., M is anni-
hilated by m” for n > 0. We thank Bill Crawley-Boevey for pointing this out to us;
the following argument was also suggested by him. The above claim is a special case
of the following more general fact: if a ring U with unit is complete in the I-adic
topology for some two-sided ideal I, and M is a U-module of finite length n, then
I"M = {0}. Indeed, the element 1+ z is invertible in U for any = € I, since it has
inverse 1 — x + 22 — 2% + ---. Thus I is contained in the Jacobson radical J (since
J is the set of © € U such that 1 + zy is invertible for all y € U). Thus IS = {0}
for any simple U-module S (since J is the intersection of annihilators of all simple
modules). Now if M has composition series

{O}:MOCM1C"'CMn:M,

then for all ¢« > 1, we have I(M;/M;_1) = {0}, so IM; C M,; ;. It follows that
I"M = {0}, as claimed.

The aim of this section is to extend the definition of QP-mutations in Corollary (.41
and Definition to the level of QP-representations, and to prove a representation-
theoretic extension of Theorem 5.7 To do this, we first introduce right-equivalence
for QP-representations.

Definition 10.2. Let (A, 5) and (A', ") be QPs on the same set of vertices, and let
M = (M,V) (resp. M" = (M', V")) be a decorated representation of (A,S) (resp.
of (A',5")). A right-equivalence between M and M’ is a triple (¢, 1, n), where:
e v: R((A)) — R((A’)) is a right-equivalence between (A, S) and (A4’,S") (see
Definition [A.2]);
e ¢y : M — M’ is a vector space isomorphism such that ¢ o uy = ¢(u)y o
for u € R((A));
e 17:V — V' is an isomorphism of R-modules.

Remark 10.3. The usual notion of isomorphism of decorated representations M =
(M, V) and M' = (M', V') of the same QP (A4, S) (namely, that M and M’ are iso-
morphic P(A4, S)-modules, and V and V' are isomorphic R-modules) is a special case
of right-equivalence with the ¢-component being the identity. The right-equivalence
seems to be more relevant for applications to cluster algebras. To illustrate, consider
the Kronecker quiver () with two vertices 1 and 2, and two arrows a and b from



40 HARM DERKSEN, JERZY WEYMAN, AND ANDREI ZELEVINSKY

1 to 2. Since @ has no oriented cycles, it has only one QP (A, S): the one with
S = 0. Thus, a decorated representation M = (M, V') with V' = 0 is just a usual
representation of the quiver @), i.e., it consists of two vector spaces M; and M,, and
two linear maps a and b from M; to M. Such representations were classified by
Kronecker. In particular, he proved that, for every n > 1, the isomorphism classes of
indecomposable Q-representations with dim M; = dim M, = n are naturally param-
eterized by the projective line. However all these representations are right-equivalent
to each other. This is more in sync with the fact that, as discussed in [16], all these
representations give rise to the same element of the corresponding cluster algebra.

We now present a representation-theoretic extension of Theorem Let M =
(A, S, M, V) be a QP-representation, and let ¢ : R((A;ea ®C)) — R((A)) be a right-
equivalence of the QPs (Areq, Sted) B (C,T) and (A, S), where (Ayeq, Sreq) is a reduced
QP, and (C,T) is a trivial QP, see Theorem 1.6l We define a R((Aeq))-module M’
by setting M’ = M as a K-vector space with the action of R({A,eq)) given by uy; =
©(u) . In view of Proposition [d.5], this makes a quadruple Mieq = (Ared, Sreas M, V)
a well-defined QP-representation.

Definition 10.4. We call the QP-representation M.,.q given by the above construc-
tion the reduced part of M.

This terminology is justified by the following.

Proposition 10.5. The right-equivalence class of Mieq is determined by the right-
equivalence class of M.

Proof. To get more in sync with the notation in Proposition B9, we change our
notation a little bit and assume that M is a decorated representation of a QP
(A® C, S+ T), where (A,S) is a reduced QP, and (C,T) a trivial one. Let ¢
be an auto-right-equivalence of (A @ C,S + T), that is, an algebra automorphism
of R({A & C)) such that ¢(S + T) is cyclically equivalent to S + 7. To prove
Proposition [[0.5 it suffices to show the following:

(10.1) there exists an algebra automorphism ¢’ of R{{A)) such that
¢'(S) is cyclically equivalent to S, and ¢'(u)y = p(u)y for u € R((A)).

As in the proof of Proposition [4.9] let L denote the closure of the two-sided ideal
in R((A® C)) generated by C. Recall from ([AI0]) that we have

R{{A® () = kR{{A)) & L,

and
JIS+T)=JS)a L

(in the last equality, J(S) is understood as the Jacobian ideal of S in R((A))). In
particular, we have uy; = 0 for u € L.

Let ¢ : R{(A)) — R((A)) denote the restriction to R((A)) of the composition
p o ¢, where p is the projection of R({A @ C)) onto R((A)) along L. Then we have
(u)y = @(u)y for u € R{(A)).

According to (£12), ¥ is an algebra automorphism of R{(A)). Furthermore, using
(412)) in conjunction with Proposition [£.I0, we conclude that J(u(S)) = J(5), and
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that there exists an algebra automorphism 7 of R((A)) such that n(1(5)) is cyclically
equivalent to S, and n(u) —u € J(S) for u € R((A)). Taking ¢’ = no1, we see that

@' (W) = () = () = o(u)m
for u € R((A)). Thus ¢’ satisfies all the conditions in (I0.1]), and we are done. [
).

We turn to the definition of mutations for a QP-representation M = (A, S, M,V
We fix a vertex k satisfying (5.I]), and let a4, ..., a, be all arrows with h(a,) = k,
and by, ..., b, be all arrows with #(b,) = k. We denote

s t
(10.2) Min = P Mita,),  Mow = P Migs,-
p=1 q=1

Let a = ay : My, — My, and 8 = By @ My, — My, be K-linear maps given in the
matrix form by

b1
ba
(10.3) a=(a ay -+ a;), B= :
bt
We also introduce a K-linear map v = 7y : My — M, as follows. Replacing S
if necessary by a cyclically equivalent potential, we may assume that S € R((A)); ;

(see (6.I)). We identify R((A));; with R((A;;)) as in Lemma 6.2 This allows us
to define the component v, , : Mpe,) — Myq,) of v by setting

(10.4) Vr.g = Olbgap)S-
Thus, we have constructed the following triangle of linear maps:
(10.5) M,
7N
Mi Mout

Lemma 10.6. We have ay =0 and v3 = 0.
Proof. The g-th component of a7y is equal to

> ay0ya,)S = 0, S
p

therefore, ay = 0, since M is a representation of P(A,S). Similarly, the p-th com-
ponent of 4 is equal to
Z(a[bqap]s)bq = 8‘11)5’
q
implying that v = 0. U

Now let (4, S) be given by (5.4) and (5.8). We associate to a QP-representation

M = (A, S, M, V) the QP-representation fix(M) = (2[, S, M, V) defined as follows.
First, we set

(10.6) Mi=M,; V;=V; (i#k).
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We define M}, and V, by

— kery | ker o — ker 8
(10.7) " im ker S Nim «

We now define the action on M of all arrows in A (recall that they are given
by (5.0) and (5.7)). Thus, for every such arrow ¢, we need to define a linear map
Cir - Mt(c) — Mh(c)-

First, we set

e = Cm

for every arrow ¢ not incident to k, and

[bgaplar = (bgap)

for all p and q.
To define the action of the remaining arrows ay and by, we assemble them into the
operators

a= (b by oo b))
and
aj
i@
a*

in the same way as in (I0.3]). Thus, we need to define linear maps
a: Moy :Min _)Mka Bﬁk %Mout = M.

We will use the following notational convention: whenever we have a pair U; C U,
of vector spaces, denote by ¢ : Uy — Uj the inclusion map, and by 7 : Uy — Uy /Uy
the natural projection. We now introduce the following splitting data:

(10.8)  Choose a linear map p : My, — kery such that pr = idker -

(10.9)  Choose a linear map o : ker ov/im v — ker o such that 7o = idyer o /im ~-

Then we define:

(10.10) a=| "1, B=(0 ¢ w 0).

Having defined the action of all arrows in A on M, we can view M as a module

over the path algebra R(A). The property that M is annihilated by m(A)" for n > 0

implies that M is annihilated by A" for n > 0. This allows us to view M as a module

over the completed path algebra R(({A)).

Proposition 10.7. The above definitions make jix(M) = (M, V) a decorated repre-
sentation of (A, S).
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Proof. We only need to show that (8C§ )iz = 0 for every arrow c in A. If ¢ is not
incident to k, the desired statement follows from (6.6)). If ¢ is one of the arrows [b,a,),
then, in view of (6.5) and (I0.4), it is enough to show that

apby + Ypg =0

for all p and ¢. In other words, we need to show that f@ = —v; But this follows at
once by multiplying the row and column given by (I0.10).

It remains to show that (0,;5)37 = 0 and (9 S)37r = 0 for all p and g. We first
deal with the first equality. Remembering (5.8) and (5.9), we see that

(a3 SVar = (O Uslbaan])r = (D (05)37(ba)ar) (ap)ar-

q

Thus it suffices to show that

> ®)ar(bg)as =0,

q
or equivalently, @3 = 0. In view of (I0.I0), we have
—mppP
af = —(’)Yﬁ =0,
0

as desired (the equality mp = 0 is immediate from the definitions, while v = 0 by

Lemma [10.6]).

The remaining equality (9y;.S)37 = 0 is proved in a similar way. We have
(8b§§)ﬁ = (Z[bqap]a;)ﬁ = (bq)M Z(ap)M(a;)M~
p p

Thus, it suffices to observe that
aff = (0 aL  aLo O) =0.
O

Example 10.8. Let us illustrate the definition of the operation ji; by a special case
where the vertex k is a sink or a source. First suppose k is a sink, that is, there are
no arrows b with ¢(b) = k. Then we have My, = {0}, hence 5 = 0 and v = 0. Thus,

(I0.7) simplifies to
My =kera®V,, V}=-coker «.

The arrow span A is obtained from A by reversing all arrows a with h(a) = k, that

is, replacing every such arrow a with a*. Thus, k becomes a source for A, hence
M;, = {0} and @ = 0. The choice of splitting data (I0.8) and (I0.9) becomes
immaterial, and the second equality in (I0.10) simplifies to

F=( 0).

Note that we have ;Ikk = A} » and the potential Se R((ﬁkk» is naturally identified
with S.
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The case where k is a source is completely similar. In this case we have M;, = {0},
hence « = 0 and v = 0. It follows that

M, =coker B®V;, Vi=kerf,
and the map @ : M, = Moy — M), is given by

5= (‘O”).

In both cases, ji; coincides with the “extended reflection functor” introduced in
[28]; furthermore, if we ignore the decorations (and the potentials), it becomes the
classical Bernstein-Gelfand-Ponomarev reflection functor at k, see [3].

Now we return to the case of an arbitrary vertex k.

Proposition 10.9. The isomorphism class of the decorated representation fix(M)
does not depend on the choice of the splitting data (I0.8) — (I0.9).

Proof. We have the following freedom in choosing the splitting data: one can replace
p: My — ker~y with p/ = p + £y for some linear map £ : im v — ker v, and replace
o : kera/im v — kera by ¢/ = o + 7 for some linear map 7 : ker a/im v — im 7.
Let @ and B/ be the maps obtained by replacing p with p/, and o with ¢’ in (I0.10]).
It is enough to show that va@ = @ and Elw = [ for some linear automorphism
¥ : My — Mj. Decomposing M} as in (I0.7), we define ¢ as the block-triangular

matrix

I =& 0 0
10 I -n O
¢_OO I o}’

0 0 0 I

where [ stands for the identity transformation. The invertibility of 1 is obvious,
_, JR—

and the desired equalities Y@ = @ and S = [ are checked by direct matrix

multiplication. O

Proposition 10.10. The right-equivalence class of the representation fi,(M) is de-
termined by the right-equivalence class of M.

Proof. Let ¢ be an automorphism of R{(A)), and let M’ = (A, p(S), M', V') be the
QP-representation defined as follows: V/ =V and M’ = M as R-modules, while the
R{(A))-actions in M and M’ are related by

(10.11) upy = p(u)ar  (u € R((A)))

(note that (I0.I1)) indeed defines a representation of (A, ¢(S)) in view of Proposi-
tion B.17). To prove Proposition [[0.10] it suffices to show that the representations
fir(M) and i (M) are right-equivalent.

We retain all the above notation related to M and pix(M); in particular, «, 3
and ~y stand for the linear maps in the triangle (I0.5)). Let o/, 8’ and 4" denote the
corresponding maps for the representation M’. Our first order of business is to relate
these maps to a, 5 and 7.

We can write the action of ¢ on the arrows aq, ..., as as follows:

(10.12) (plar) @(az) --- las)) = (a1 az -+ as)C,
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where C' = Cj + (] is an invertible s X s matrix as in (5.14]). Similarly, the action of

 on the arrows by, ..., bs can be written as
@(br) by
(10.13) Al
o(0) b
where D = Dy + D; is an invertible ¢ x ¢ matrix as in (5.15]). Therefore we have
(10.14) a=(ar a - a5),, = (pla) wla) - pla)),,
= (@ a2 - a5)C)wr =/ Cup,

and similarly,
(10.15) 8= D

here Cyys (resp. D) is understood as an R-module automorphism of M), = M;,
(resp. of M! . = Myy)-

out —

Turning to the maps v and +/, we claim that they are related by

(1016) ’}// = CM/’}/DM/.
To see this, we use (I0.4]) and (3:6) to write
(10.17) Vog = (OpganP(S)) arr

= ZA[bqap] )T(:5))

where the sum is over all arrows ¢ in Ach%‘ If ¢ is one of the arrows in A then by

(T0.IT) we have
So(acS)M’ = (acS)M =0;

remembering the definition ([B.3), we see that ¢ does not contribute to (I0.I7). Thus,
we have

(10.18) Voy = ZA bgap) (2 (b 0 )) 0D, 1 S) ) -

Remembering (3.2), and using (I0.12) and ([I0.I3), we see that the summand with
(v',q") = (p,q) in (I0IX) contains among its terms the (p, ¢)-entry of the matrix

(C(p(a[bqap]S>D>M' = C’M’f)/DM’-

Thus, to prove ([I0.I6]), it remains to show that the rest of the terms in (I0.I8) add
up to 0. Again using the definitions ([3.2)) and (B:3)), we can rewrite the rest of the
sum in (I0.I8) as Sy + Sa, where

S0 = () Ay (0(00)) By - Oy ya1S)) s
p,q"

ZA% )LD ya,1S - by )
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It remains to observe that

ZA qap D(p(ab /S)> =0

since (0, S)mr = (O, S)ar = 0; and similarly,

ZA wan) (2(a)) 30 (0a, S)) = 0.
In view of (T0.14), (DIBE) and (I0.I6), we have
kera = Cpj(kera’), ima =im o/,
(10.19) ker f = ker ', im 8 = Dyp(im f'),

kery = Dyp(kery’), im~y = C;p(im~).
Recall that the spaces M and V in the decorated representation fiz(M) = (M, V)
of (A, S) are given by (I0.6) and (I07). We express the decorated representation
fip(M') = (M7, V7) of (A, (S)) in the same way, with the maps «, 5 and 7 replaced

by o, 8" and 7'. In particular, we have V' =V, and M'; = M; = M, for i # k.
To specify the actions of R{(A)) in M and M’, we need to choose the splitting data

(p,0) and (p/,0’) as in (10.8)) and (I0.9). Note that, in view of ({0.19), we can choose
(10.20) o =DyipDyr, o = CupoChp

here with some abuse of notation we use the same notation C’ ; for the isomorphism
ker o/ — ker @ and the induced isomorphism ker o/ /im " — ker a/im 7.

Everything is now in place for defining the desired right-equivalence (@, 1, ) be-
tween fix(M) and g (M) (see Deﬁmtlonm First of all, we define o : R{(A)) —

R((A)) as the right-equivalence between (A, 5) and (A, @(S ) constructed in the proof
of Lemma In particular, we have

?Ea{; ay
SO ag — ag N * N * N * * * * —
. =C! - ((p(b1> pbs) - W(bt)):(lh by - bt)D g
P(ay) ay

Next we define v : M — M’ as the identity map on EBZ-#MZ- = ®ixM; = EBZ-#WZ-,
and the restriction ¢|Mk : M, — M}, given by the block-diagonal matrix

Dy, 0 0 0
0 Cyw 0 0
0 0 Cu O

0 0 0 I
(this is well-defined in view of (I0.19))).
identity map. N
The only thing to check is the equality ¢ o cj; = P(c)y 0 ¢ for any arrow ¢ € A.
And the only case that may require some consideration is when c is one of the arrows
a, or by. Unraveling the definitions, it suffices to show that

B = C_%FO’MMW ¢|Mk oo = EDZT/II’

(10.21) Vi, =

Finally, we define n : V' — V’ simply as the
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But this is an immediate consequence of the definitions (I0.2T]) and (I0.I0) (we also
need an analogue of (I0I0) for the maps 3 and «, using the splitting data (I0.20)).
This completes the proof of Proposition 1010l O

Note that in the above treatment of the operation M — (M) for a QP-
representation M = (A, S, M, V), the QP (A, S) was not assumed to be reduced.
Recall from Proposition that we have a well-defined operation M +— M,.q on
(right-equivalence classes of) QP-representations. The following property is imme-
diate from definitions.

Proposition 10.11. Let (A, S) be a QP satisfying (51l). Then, for every represen-
tation M of (A, S), the representation ji,(M)yeqa s right-equivalent to fir(Mied)red-

Recall that, according to Corollary 5.4l and Definition [5.5] the correspondence fiy, :
(A,S) — (A, S) = (A, S) gives rise to the mutation (A, S) — ux(A,S) = (4,5),
which is a well-defined bijective transformation on the set of right-equivalence classes
of reduced QPs satisfying (5.1]). Here (A, S) is the reduced part of (A, S). Now for
every QP-representation M = (A, S, M, V) of a reduced QP (A, S) we define

(10.22) pie(M) = Jig(M)rea;

thus, up(M) is a decorated representation (A, S, M,V) of a reduced QP (A,S).
Combining Propositions and [[0.10, we obtain the following important corollary.

Corollary 10.12. The correspondence M — (M) is a well-defined transforma-
tion on the set of right-equivalence classes of decorated representations of reduced

QPs satisfying (5.1)).

We refer to the transformation M +— (M) in Corollary as the mutation at
vertex k. With some abuse of terminology, we will talk about mutations of decorated
representations (rather than their right-equivalence classes).

The following result naturally extends Theorem 5.7

Theorem 10.13. The mutation uy of decorated representations is an involution; that
is, for every decorated representation M of a reduced QP (A, S) satisfying (1)), the
decorated representation pi(M) of a QP uz(A,S) is right-equivalent to M.

Proof. Tn view of Proposition 0T, u3(M) is right-equivalent to 2 (M),eq. There-
fore, is suffices to show that fi3(M),eq is right-equivalent to M.

We write the QP-representation fi2(M) as i2(M) = (A, S, M,V). The QP (4, S)
is given by (B.18) and (5.19). In particular, there is a natural embedding of A into

A identifying A with the reduced part gred. Furthermore, as shown in the proof of

Theorem (.7 an automorphism of R((A)) that establishes the right-equivalence in
(EIT) can be chosen so that it restricts to an automorphism g : R({A)) — R{({A))
acting as follows:

(10.23) o multiplies each of the arrows by, ..., b; by —1,

and fixes the rest of the arrows in A.
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In view of Definition [0.4, the QP-representation (M) = Jif (M )yea can be realized

as (A, S, M', V"), where M’ = M and V' = V as vector spaces, and the action of
R((A)) in M’ is given by

(10.24) wr = polu)s  (u€ R{(A))).

To prove Theorem [I0.13] it suffices to show that the decorated representation (M’ V')
of (A, S) is isomorphic to (M, V).

We first compute M’ = M and V' = V as vector spaces. According to (I0.6]), we
have

M =M,=M,=M, V =V,=Vi=V,
for all i # k. As for the spaces M; and V}, they are given as in (I0.7), with the maps
@, 8, and v replaced by @, 3, and 7, respectively. Recall that @ and 3 are given by

(I010). As for 7, by applying the definition (I0.4]) to the potential S given by (5.8])
and (5.9), we see that

(10.25) ¥ = fBa.
As a direct consequence of the definitions, we conclude that
kera =im §, ima= Eﬁ—rg@imv@{()}@{()},
(10.26) ker =2 @ {0} @{0}@V,, imf=kera,
kery = ker(far), im 7 =im (Sa).
It follows that

= ker 3
W=Vi= =2y,
ker S Nim @
and so V' =V, as desired. We also have
ker(fa) . im /3 ker 3
M, = )
F ker o S im (o) & im (fa)  ker fNim «

We now make the following easy observations:

the map « induces an isomorphism ker(f«)/ker « — ker f Nim «;

the map /8 induces an isomorphism im «/(ker 5 Nim «) — im (Sa);

the map /8 induces an isomorphism My /(ker 5 4+ im ) — im §/im (Sa).
there is a natural isomorphism ker §/(ker f Nim a) — (ker § +im «)/im a.

Using these isomorphisms, we can identify M) with the space
im o M, ker 5 +im «

10.2 M, = (k i
(10.27) k (erﬁmlma)@kerﬁﬂima@kerﬁ—l—ima@ im «

To describe the action of R((A)) in M’, we need only to describe the maps o :
My, — Mj, and p' : M| — Moy constructed in the same way as in (I0.3]). As in
(IOI0), the definition of o and A’ involves splitting data (I0.8) - (I0.9). In view of
(I026)), in the current situation the splitting data take the following form:

Choose a linear map p : M, — ker(Ba) such that pt = idier(ga)-
Choose a linear map @ : im /im (Sa) — im § such that 76 = idim g/im (8a)-
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Adapting (T0.I0) to the current situation (in particular, realizing M} as in (I0.27)),
we see that the maps o and 3’ take the following form:

(10.28) o = _go‘ . B =0 -8 —@8 0);

0
here with some abuse of notation we denote by the same symbol § the two maps
im o/ ker f Nim o — Moy and My /(ker f +im o) — im f/im (fa) induced by (.
Note that the appearance of the minus sign in ' is caused by the minus sign in

(I0:23).
To complete the proof of Theorem [I0.13] it remains to construct an isomorphism
of vector spaces 1 : M, — M, such that

(10.29) o' = q, By =7
To do this, notice that the four direct summands in (I0.27) are the factors in the
filtration
{0} CkerfNim o Cim o C ker f +im a C M.

Choose some sections

oy :im o/ (ker S Nim o) — im «,

oy @ (ker f +im «)/im a — (ker f + im «),

o3 My/(ker 4+ im a) — M
for the three factors of this filtration, so that they satisfy:

im oy = a(kerp), im oy C ker 3, im (fos) =im 7.
Now define an an isomorphism v : M; — M, by setting
V= (—L —101 —LOg3 —La2) .

The equalities (I0.29) are checked by a direct inspection, finishing the proof. O]

Note that there is an obvious way to define direct sums for decorated repre-
sentations of a given QP (A,S). Hence we can talk about indecomposable QP-
representations. Clearly, the right-equivalence relation respects direct sums and in-
decomposability. It is also immediate from the definitions that any mutation p; of
QP-representations sends direct sums to direct sums. Combining this with Theo-
rem [[0.13] we obtain the following corollary.

Corollary 10.14. Any mutation py is an involution on the set of right-equivalence
classes of indecomposable decorated representations of reduced QPs satisfying (5.1]).

We call a QP-representation (A, S, M, V) positive if V' = {0}. Thus, indecompos-
able positive representations are just indecomposable P (A, S)-modules. In partic-
ular, for every vertex k, the simple representation Si(A,S) is the indecomposable
positive representation of (A, S) such that dim M; = ;. We denote by S, (A, S) the
indecomposable representation (M, V') of (4, S) such that M = {0} and dim V; = §, .
We refer to S, (A, S) as the negative simple representation at k. The following propo-
sition is immediate from the definitions.
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Proposition 10.15. Any indecomposable QP-representation is either positive, or
negative simple. If ux(A,S) = (A, S) then we have

(10'30) ,Uk(Sk(A’ S)) = Sk_ (Z’ g)a :uk(Sk_ (A’ S)) = Sk(z> g)v

and this is the only mutation that interchanges positive and negative indecomposable
representations.

11. SOME THREE-VERTEX EXAMPLES

In this section we illustrate the action of mutations on QP-representations by
some examples dealing with three-vertex quivers. All the representations (M, V)
considered below will be positive, i.e., V = {0}.

Example 11.1. Let @ be the quiver with three vertices 1, 2,3 and two arrows a :

1—=2andb:2— 3:
2
7N
1 3

Since () is acyclic, the only QP on it is (A,0). We have py(A,0) = (A,S), where A
is the arrow span of the quiver ) given by

2

v N

1 —)[ba] 3
and S = b*[ba]a*. Thus, positive representations of (A, 0) are the representations of

the quiver @, while positive representations of (A, S) are the representations of the
quiver ) satisfying the relations

(11.1) b*[ba] = [ba)a* = a*b* = 0.

In view of Corollary [[0.14] and Proposition [10.15] the mutation s establishes a
bijection between the set of right-equivalence classes of indecomposable positive rep-
resentations of (A, 0) different from the simple representation Sy, and the same set for
(A, S). Since Q is a Dynkin quiver of type As, by Gabriel’s theorem, an indecompos-
able positive representation M of (A, 0) is uniquely up to an isomorphism determined
by its dimension vector dim M = (dim M;, dim M, dim M3), and these dimension
vectors are the positive roots of type As (note that in this case, the right-equivalence
classes are the same as isomorphism classes). Computing the images of these rep-
resentations under po, we obtain the correspondence between the dimension vectors
given in Table [l We conclude that an indecomposable positive representation of

dimM | (1,0,0)](0,0,1) | (1,1,0) | (0,1,1) | (1,1,1)
dim po(M) | (1,1,0) | (0,1,1) | (1,0,0) | (0,0,1) | (1,0,1)

TABLE 1. Indecomposable representations for As and the cyclic triangle.
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(A, S) is uniquely up to right-equivalence determined by its dimension vector, and
these dimension vectors are given in the second line of Table [l with the exception
of dim S, = (0, 1,0).

Example 11.2. Now let () be the quiver with three vertices 1,2, 3 and three arrows

a:1—2,b:2—3,andc:1— 3:
2
N

C

1

3

Again, the only QP on Q is (A,0). We have j3(A,0) = (4,S), where A is the arrow

span of the quiver () given by

and S = b*[ba]a*. Again, positive representations of (4,0) are the representations of
the quiver (), while positive representations of (4, S) are the representations of the
quiver @ satisfying the relations (I1.1)).

We consider indecomposable positive representations of (A, 0) with the dimension
vector (n,n,n) for some n > 1. Assume that K is algebraically closed. Since @ is
an extended Dynkin quiver of type Agl), and (n,n,n) is an isotropic imaginary root,
by Kac’s extension of Gabriel’s theorem, the isomorphism classes of indecomposable
@-representations of this dimension form a 1-parametric family. An easy check shows
that these representations break into three right-equivalence classes. Their represen-
tatives can be described as follows. For each of them we have M; = My = M3 = K™,
and two of the maps ays, bys, car are equal to the identity map I, while the third one
is the nilpotent Jordan block N. If ay; = N (resp. byy = N, ¢y = N) then we
denote the corresponding @Q-representation by M (a) (resp. M(b), M(c)). In view of
(@07, if M is one of these representations then py(M) = M is positive, and we have

My = coker by @ ker ayy

(note that since S = 0, we have v = 0). It follows that M (c) has dimension vector
(n,0,n), with the maps [ba]m NETOR K™ — KV given by [ba]m =1, iy = N.

Also both representations M (a) and M (b) have dimension vector (n,1,n). In each

of them, the arrows [ba] and c act as [ba] = N,c = I. We also have b ol 0, while
Zile malp; TCLL;*V[ (“)K: f —1: K; has i@ aj\}[\(fa) = ker N; similarly, a% = 0, while the map
Ok — as ker b+ = im N.

Example 11.3. Our last example deals with the QP (A,S) from Example
Thus, the quiver in question has three vertices 1, 2,3 and six arrows aj,as : 1 — 2,
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bi,by : 2 — 3 and ¢1,¢5 : 3 — 1; and the potential S is given by (82).
2
2N
AQA
3
Cc1

To specify a positive representation M of (A, S), we need to define three vector spaces
My, My, M3, and six linear maps (a1)s, (a2)ar : My — My, (b1)ar, (b2)ar © My — Ms,
and (¢1)ar, (c2)ar : M3 — M. In our case, J(5) is the closure of the ideal in R((A))
generated by six elements

1

c1bi, biay, ajcy, cabg, baag, ascs.

Thus, all the compositions (¢1)ar(b1)ar, - - -, (a2)ar(c2)yr must be equal to 0.

We first consider the indecomposable positive representation M of (A, S) given
by:
(112) M1 = M2 = K, M3 = O, (CLl)M = (a2)M =1.
Let us compute po(M) = (M,V). First of all, the QP p2(A4,S5) = (A,S) was
computed in Example 8.6 recall that the arrows in A are aj, a3, by, b3, [bias], [b2ai],
and the potential S is given by

g = [blag]&gb’{ + [bg&l]&){bg.
To compute M and V, we apply (I0.6) and (I0.7) to the triangle (I0.F) given by
My = K?, My =My =K, Moy = {0}, a=(1 1)

(so we have 8 = 0 and v = 0). It follows that V = {0}, i.e., uz(M) is positive; we
also have M, = My = K, M3 = Mz = {0}, and

My =kera=K - (_11)

(this is the third term in the decomposition of M, in (I07)). Since M3 = 0, the
arrows by, b, [b1as], [bea;] act as 0 in M. As for af and a3, their action is given by
the second equality in (I0.10) (note that the choice of a splitting (I0.9]) is immaterial

here). Namely, identifying M, with K via choosing <_11) as the standard basis

vector, we obtain

as maps Mo =K — K = M;.
Note that the resulting representation ps(M) can be conveniently described as
follows: by renumbering the vertices of our quiver via

(11.3) =2 2=1, 3=3,
and setting
(11'4) all = —GE, a,2 = a){a bll = [b1a2]’ bl2 = [b2a1]> Cll = _b)1k> 0,2 = bg’

the representation ps(M) gets identified with the initial representation M of the
initial QP (A, 5).
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The mutation p; (M) can be computed in a similar way. But since we have already
computed the QP pus(A,S) = (A, S), we find it more convenient to renumber the
vertices via 1’ = 3, 2" = 1, 3’ = 2, so that ui(M) gets identified with po(M’), where
M’ is given by:

(11.5) M; =0, My=M;=K,; (bi)u = (b)) = 1.
Now the triangle (I0.0) is given by

Mi/n = {O}v Mlg = Mé = K7 M(;ut = K2’ B - (})

(so we have o = 0 and v = 0). It follows that ps(M’) is positive, and we have
= M; = {0}, M = M; = K, and

ﬁﬁ2zzkﬂ/kf.(})

(this is the first term in the decomposition of My in ([I0.7)). Since M| = 0, the
arrows aj, aj, [byas), [b2aq] act as 0 in M’. As for b7 and b3, their action is given by
the first equality in (I0.10) (note that the choice of a splitting (I0.8) is immaterial

here). Namely, identifying M’, with K via choosing 71'(((1))) = —7T(<(1))) as the
standard basis vector, we obtain
O =-1, () =1

as maps M's = K = K = M's.
As above, by renumbering the vertices of our quiver via

(11.6) =1, 2=3 3=2
and setting
(11.7) aj = [beay], ay = [hag], by = b3, by = —by, ¢} =aj, dh = —aj,

the resulting representation o (M') gets identified with the initial representation M’.

We now include the representations M and M’ given by (I1.2)) and (III) into
a family of positive representations of (A, S) defined as follows: for every pair of
nonnegative integers (m,n) # (0,0), we define the positive representation M =
M(m,n) of (A,S) by setting

(118) M1 - Km, M2 - Km—l—n, M3 - Kn

and
w9 =) = (). =0 1),
(b)ar = (In 0), (c)w =0, (c2)ar =0,

where [,, is the n x n identity matrix.

We refer to the representations M(m,n) as well as those obtained from them by
renumbering the vertices as band representations; they are a special case of band
modules studied in [11l 2] in the context of string algebras. Note that both repre-
sentations M and M’ treated above are indeed special cases of band representations:
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we have M = M(1,0), M’ = M(0,1). By a direct generalization of the above
computations, we obtain the following proposition.

Proposition 11.4.

(1) If m > n then after renumbering of vertices as in (IL3]) and the change of
arrows as in ([I4), the representation ps(M(m,n)) can be identified with
M(m —n,n).

(2) If m < n then after renumbering of vertices as in (IL6l) and the change of
arrows as in ([IIT), the representation pus(M(m,n)) can be identified with
M(m,n —m).

Remembering Theorem [10.13] we obtain the following corollary.

Corollary 11.5.

(1) After renumbering of vertices as in (I13)), the representation py(M(m,n))
becomes right-equivalent to M (m + n,n).

(2) After renumbering of vertices as in ([I16), the representation pus(M(m,n))
becomes right-equivalent to M(m, m + n).

Corollary 11.6. The class of band representations is closed under mutations.

Note that if we iterate the mutations in Proposition [T.4] the pair (m,n) gets
transformed according to the Euclid algorithm for finding ged(m,n). Thus, after a
sequence of mutations (and appropriate renumberings of vertices), every M (m,n)
can be transformed into M (ged(m,n),0). Since M(d,0) is obviously isomorphic to
the direct sum of d copies of M(1,0), by backtracking this sequence of mutations,
we obtain the following well-known corollary.

Corollary 11.7. The representation M(m,n) is indecomposable if and only if m
and n are relatively prime. Furthermore, if gecd(m,n) = d then M(m,n) is right-
equivalent to the direct sum of d copies of M(m/d,n/d).

Remark 11.8. By the same methods as above, one can compute all the mutations for
another family of representations of the QP (A, S) in Example ITT.3t string modules
introduced and studied in [11], 21].

12. SOME OPEN PROBLEMS

Here we collect some natural questions that we find important for better under-
standing of QPs and their representations. In what follows, suppose that (A, 5) is a
reduced QP with the Jacobian algebra P(A, S). Let M(A, S) denote the category of
finite dimensional P(A, S)-modules. Suppose also that k € @)y is a vertex satisfying
(5.T)), so that the mutated reduced QP px (A, S) is well-defined.

Question 12.1. Is the isomorphism class of P(A,S) determined by the equivalence
class of the category M(A,S)?

Question 12.2. Is the isomorphism class of P(ux(A, S)) determined by the isomor-
phism class of P(A,S)?

Question 12.3. Is the category M (ux(A,S)) determined up to equivalence by
M(A, S)?
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Note that the right-equivalence class of (A4, S) is not determined by the isomor-
phism class of the Jacobian algebra P(A, S). In fact, we can construct a QP (A4, S)
which is not right-equivalent to (A, ¢S) for some nonzero ¢ € K, while we obviously
have P(A,S) = P(A,cS) (the possibility of such an example was brought to our
attention by Bill Crawley-Boevey).

We conclude with the following intriguing question.

Question 12.4. Is there a proper analogue of the cluster category for a non-acyclic
quiver with potential?

13. APPENDIX. PROOF OF LEMMA (4. T2

We include Lemma into a more general setup. We call a K-vector space V' a
C-space (for the lack of a better term) if V' has an increasing filtration {0} = V{ C
Vi C --- such that all V,, are finite dimensional, and V' = J,,» V,.. (Equivalently, V
is either finite dimensional, or it has countable dimension.) The class of C-spaces is
clearly closed under taking subspaces, quotient spaces, finite direct sums, and finite
tensor products. We always consider C-spaces equipped with discrete topology; in
particular, this applies to the base field K.

We refer to the dual space V* of a C-space V' as a D-space (the dual is understood
as the space of all linear forms V' — K). Most of the properties of D-spaces discussed
below are undoubtedly well-known; for the convenience of the reader, we provide a
self-contained treatment.

Example 13.1. The complete path algebra R((A)) can be naturally viewed as a
D-space V*, corresponding to the C-space V = @3,(A%)", and the filtration (V},)
given by

Vo = @1ml (A" (0> 1),

For a subspace W of V, we denote by W+ C V* its orthogonal complement, that

is,
W= {fev|f(W)=0}.

We make V* into a topological vector space by taking the sets V- for all n > 0
as a basic system of open neighborhoods of 0. In particular, in Example [[3.1], we
have VX = m(A)", so the D-space topology on R({A)) coincides with the topology
introduced in Section

Since every v € V belongs to some V,,, a sequence fi, fs,... converges in V* if and
only if, for every v € V, the sequence (fi(v)) stabilizes as k — oo. This implies in
particular that W+ is a closed subspace of V* for every subspace W of V. In fact,
the converse is also true.

Lemma 13.2. A vector subspace Z of V* is closed if and only if Z = W+ for some
subspace W of V.

Proof. Let Z be a vector subspace of V*. Let
W={veV|f(v)=0for feZ}.

It suffices to show that W' is contained in the closure Z of Z. Let f € W+,
Restricting f to each finite-dimensional subspace V,, of V', we conclude that f

Vo =
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h., ‘VL for some h,, € Z. Thus, the sequence hq, hs, ..., converges to f, implying that
f € Z, as required. O

In view of Lemma[I3.2] for every closed subspace Z of V*, the spaces Z and V*/Z
can be naturally viewed as D-spaces: indeed, we have

Z=W+=(V/W), V*)Z=V*/W+=W*
for some subspace W of V. The following lemma is immediate from the definitions.

Lemma 13.3. For every closed subspace Z C V*, the D-space topologies on Z and
V*/Z coincide with the topologies induced from V*. In particular, the embedding
Z — V* and the projection V* — V*/Z are continuous.

Lemma 13.4. If Z, and Z5 are closed subspaces of V*, then Zy + Zy is a closed
subspace of V* as well.

Proof. By Lemma [3.2, Z; = Wi and Z, = W5t for some subspaces W, and W,
of V. Choosing some direct complements of W; N W5 in W; and W5, and a direct
complement of W7 + W5 in V| it is easy to see that

Zl -+ ZQ = Wll + sz_ == (Wl mW2>J_7
proving that Z; 4+ Z5 is closed. O

Lemma 13.5. Let U and V be C-spaces, and U* and V* be the corresponding D-
spaces. A linear map o : U* — V* is continuous if and only if o = * for some
linear map BV — U.

Proof. First let us show that a = * is continuous. By the definition, it is enough to
show that, for every n, there exists an index k such that Ul C a=1(V}). Since the
subspace (V) C U is finite dimensional, it is contained in some Uy, implying the
desired inclusion U C a1 (V}1).

Conversely, suppose a : U* — V* is a continuous linear map. Let v € V. Then
the linear form f — a(f)(v) is a continuous linear map U* — K, and so its kernel is
a closed subspace of U*. Using Lemma [[3.2] we conclude that there exists a unique
u € U such that a(f)(v) = f(u) for all f € U*. The correspondence v + u is the
desired linear map 3 : V — U such that a = g*. O

Lemma 13.6. Any continuous linear map of D-spaces o : U* — V* sends closed
vector subspaces of U* to closed vector subspaces of V*.

Proof. Let Z C U* be a closed vector subspace. By Lemma 3.2, Z = W+ for some
vector subspace W C U. Also by Lemma [13.5] we have o = [3* for a linear map
B:V — U. The definitions imply that a(Z) = g*(W+) = (871(W))*+, hence a(2)
is a closed subspace of V*, as claimed. O

We will call a D-space V* a D-algebra if it has a structure of an associative
K-algebra such that V,-V- C V- for all m,n > 0. In particular, R((A)) is a
D-algebra.

Lemma 13.7. If I, ..., Iy are closed subspaces in a D-algebra V*, then the subspace
Lifi+---+Infn is closed for every fi,..., fx € V*. In particular, finitely generated
left ideals in V* are closed.
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Proof. By the definition of a D-algebra, the operator of right multiplication with any
f € V* is continuous. Thus each subspace I f;, is closed by Lemma [I3.6] and our
assertion follows from Lemma [[3.4 O

Recall from Definition [3.4] that the trace space of a D-algebra V* is the quo-
tient Tr(V*) = V*/{V* V*}, where {V* V*} is the closure of the vector subspace
in V* spanned by all commutators. We denote by 7 : V* — Tr(V*) the canonical
projection. By Lemma [I3.3] 7 is continuous with respect to the D-space topologies.

In view of Proposition 3.5 the assertion of Lemma is a special case of the
following.

Lemma 13.8. Let I be a closed (two-sided) ideal of a D-algebra V*, and J be
the closure of an ideal generated by finitely many elements fi, fa, ..., fn. Then the
subspace w(I1J) C Tr(V*) is equal to w(Ify + -+ I fn).

Proof. Let J° be the ideal generated by fi, fo,..., fy, that is, the linear span of
elements of the form wfiv with u,v € V* and k = 1,..., N. Thus the ideal I.J°
is the linear span of elements of the form gufyv with g € I. By the definition, we
have 7(gufrv) = T(vgufy), and so w(IJ°) = w(Ifi + -+ + I fx). Since IJ° is dense
in 1J, it follows that m(IJ%) is dense in 7(I.J). On the other hand, the subspace
m(Ify+---+ Ify) C Tr(V*) is closed by Lemmas [[3.7 and [[3.6. We conclude that
7(IJ°) =x(Ifi+ -+ Ifn) =m(IJ), as required. O
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